Have a personal or library account? Click to login
Impact of Simulated Microgravity Environment on Bioprinted Tissue Constructs Cover

Impact of Simulated Microgravity Environment on Bioprinted Tissue Constructs

Open Access
|Sep 2025

References

  1. Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM (2023) From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology 14: 1269581. https://doi.org/10.3389/fphar.2023.1269581
  2. Atrooz F, Alkadhi KA, Salim S (2021) Understanding stress: insights from rodent models. Current Research in Neurobiology 2: 100013. https://doi.org/10.1016/j.crneur.2021.100013
  3. Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM (2024) Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. Npj Microgravity 10(1): 79. https://doi.org/10.1038/s41526-024-00418-z
  4. Berardini M, Gesualdi L, Morabito C, Ferranti F, Reale A, Zampieri M, Karpach K, Tinari A, Bertuccini L, Guarnieri S, Catizone A, Mariggiò MA, Ricci G (2023) Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroids. Cells 12(16): 2106. https://doi.org/10.3390/cells12162106
  5. Bizzarri M, Monici M, Loon JJWAV (2015) How microgravity affects the biology of living systems. BioMed Research International 2015: 1–4. https://doi.org/10.1155/2015/863075
  6. Cialdai F, Risaliti C, Monici M (2022) Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology 10: 958381. https://doi.org/10.3389/fbioe.2022.958381
  7. Cortés-Sánchez JL, Melnik D, Sandt V, Kahlert S, Marchal S, Johnson IRD, Calvaruso M, Liemersdorf C, Wuest SL, Grimm D, Krüger M (2023) Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine. Cells 12(22): 2665. https://doi.org/10.3390/cells12222665
  8. Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D (2023) Current knowledge about the impact of microgravity on gene regulation. Cells 12(7): 1043. https://doi.org/10.3390/cells12071043
  9. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547): 1708–1712. https://doi.org/10.1126/science.1064829
  10. Ferranti F, Del Bianco M, Pacelli C (2020) Advantages and limitations of current microgravity platforms for space biology research. Applied Sciences 11(1): 68. https://doi.org/10.3390/app11010068
  11. Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D (2024) Omics studies of tumor cells under microgravity conditions. International Journal of Molecular Sciences 25(2): 926. https://doi.org/10.3390/ijms25020926
  12. Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1): 013001. https://doi.org/10.1088/1758-5090/8/1/013001
  13. Guarnieri S, Morabito C, Bevere M, Lanuti P, Mariggiò MA (2021) A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytes. Oxidative Medicine and Cellular Longevity 2021(1). https://doi.org/10.1155/2021/9951113
  14. Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews 97: 260–269. https://doi.org/10.1016/j.addr.2015.11.019
  15. Huang B, Li D-G, Huang Y, Liu C-T (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research 5(1): 18. https://doi.org/10.1186/s40779-018-0162-9
  16. Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD (2024) Cellular and molecular roles of reactive oxygen species in wound healing. Communications Biology 7(1): 1534. https://doi.org/10.1038/s42003-024-07219-w
  17. Kim YJ, Jeong AJ, Kim M, Lee C, Ye S-K, Kim S (2017) Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. BioMedical Engineering OnLine 16(1): 48. https://doi.org/10.1186/s12938-017-0337-8
  18. Kouznetsov NV (2022) Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomics. International Journal of Translational Medicine 2(3): 364–386. https://doi.org/10.3390/ijtm2030029
  19. Lei S-Y, Qu Y, Yang Y-Q, Liu J-C, Zhang Y-F, Zhou S-Y, He Q-Y, Jin H, Yang Y, Guo Z-N (2024) Cellular senescence: a novel therapeutic target for central nervous system diseases. Biomedicine & Pharmacotherapy 179: 117311. https://doi.org/10.1016/j.biopha.2024.117311
  20. Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola, SA (2023) Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study. Cells 12(10): 1346. https://doi.org/10.3390/cells12101346
  21. Milojević M, Maver U, Vihar B (2023) Recent advances in 3D printing in the design and application of biopolymer-based scaffolds. In Functional Biomaterials: Design and Development, T. Mohan and K.S. Kleinschek (eds), pp. 489–559. Weinheim, Germany: Wiley. https://doi.org/10.1002/9783527827657.ch17
  22. Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA (2020) Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. International Journal of Molecular Sciences 21(10): 3638. https://doi.org/10.3390/ijms21103638
  23. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nature Biotechnology 32(8): 773–785. https://doi.org/10.1038/nbt.2958
  24. Neje P, Taksande B, Umekar M, Mangrulkar S (2024) Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasures. Microgravity Science and Technology 36(4): 46. https://doi.org/10.1007/s12217-024-10131-x
  25. Nguyen HP, Tran PH, Kim K-S, Yang S-G (2021) The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity 7(1): 44. https://doi.org/10.1038/s41526-021-00171-7
  26. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8(10): 839–845. https://doi.org/10.1038/nrm2236
  27. Ran F, An L, Fan Y, Hang H, Wang S (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophysics Reports 2(5–6): 100–105. https://doi.org/10.1007/s41048-016-0029-0
  28. Rudolf AM, Hood WR (2024) Mitochondrial stress in the spaceflight environment. Mitochondrion 76: 101855. https://doi.org/10.1016/j.mito.2024.101855
  29. Sharma SN, Meller LLT, Sharma AN, Amsterdam EA (2023) Cardiovascular adaptations of space travel: a systematic review. Cardiology 148(5), 434–440. https://doi.org/10.1159/000531466
  30. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity 2019: 1–17. https://doi.org/10.1155/2019/6175804
  31. Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Scientific Reports 9(1): 13012. https://doi.org/10.1038/s41598-019-49671-3
  32. Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS (2025) Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomaterials Science 13(1): 93–129. https://doi.org/10.1039/D4BM01192A
  33. Tripathi S, Mandal SS, Bauri S, Maiti P (2023) 3D bioprinting and its innovative approach for biomedical applications. MedComm 4(1): e194. https://doi.org/10.1002/mco2.194
  34. Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A (2022) The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants 11(7): 1224. https://doi.org/10.3390/antiox11071224
  35. Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y (2024) Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. Journal of Orthopaedic Surgery and Research 19(1): 531. https://doi.org/10.1186/s13018-024-05030-1
  36. Wuest SL, Richard S, Kopp S, Grimm D, Egli M (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International 2015: 1–8. https://doi.org/10.1155/2015/971474
  37. Xie Z, Gao M, Lobo AO, Webster TJ. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers 12(8): 1717. https://doi.org/10.3390/polym12081717
  38. Zhang X, Zhu H, Zhang J (2025) Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatment. Antioxidants 14(2): 231. https://doi.org/10.3390/antiox14020231
Language: English
Page range: 65 - 74
Published on: Sep 9, 2025
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sampada Koirala, Bela Perdomo, Brian Billings, Dylan Welch, Roshan Vijayakumar, Meghana Nelli, Caroline Moore, Caleb Phillips, Isscca Hall Burns, Kunal Mitra, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.