References
- Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM (2023) From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in Pharmacology 14: 1269581.
https://doi.org/10.3389/fphar.2023.1269581 - Atrooz F, Alkadhi KA, Salim S (2021) Understanding stress: insights from rodent models. Current Research in Neurobiology 2: 100013.
https://doi.org/10.1016/j.crneur.2021.100013 - Beckett LJ, Williams PM, Toh LS, Hessel V, Gerstweiler L, Fisk I, Toronjo-Urquiza L, Chauhan VM (2024) Advancing insights into microgravity induced muscle changes using Caenorhabditis elegans as a model organism. Npj Microgravity 10(1): 79.
https://doi.org/10.1038/s41526-024-00418-z - Berardini M, Gesualdi L, Morabito C, Ferranti F, Reale A, Zampieri M, Karpach K, Tinari A, Bertuccini L, Guarnieri S, Catizone A, Mariggiò MA, Ricci G (2023) Simulated microgravity exposure induces antioxidant barrier deregulation and mitochondria enlargement in TCam-2 cell spheroids. Cells 12(16): 2106.
https://doi.org/10.3390/cells12162106 - Bizzarri M, Monici M, Loon JJWAV (2015) How microgravity affects the biology of living systems. BioMed Research International 2015: 1–4.
https://doi.org/10.1155/2015/863075 - Cialdai F, Risaliti C, Monici M (2022) Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology 10: 958381.
https://doi.org/10.3389/fbioe.2022.958381 - Cortés-Sánchez JL, Melnik D, Sandt V, Kahlert S, Marchal S, Johnson IRD, Calvaruso M, Liemersdorf C, Wuest SL, Grimm D, Krüger M (2023) Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine. Cells 12(22): 2665.
https://doi.org/10.3390/cells12222665 - Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D (2023) Current knowledge about the impact of microgravity on gene regulation. Cells 12(7): 1043.
https://doi.org/10.3390/cells12071043 - Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547): 1708–1712.
https://doi.org/10.1126/science.1064829 - Ferranti F, Del Bianco M, Pacelli C (2020) Advantages and limitations of current microgravity platforms for space biology research. Applied Sciences 11(1): 68.
https://doi.org/10.3390/app11010068 - Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D (2024) Omics studies of tumor cells under microgravity conditions. International Journal of Molecular Sciences 25(2): 926.
https://doi.org/10.3390/ijms25020926 - Groll J, Boland T, Blunk T, Burdick JA, Cho D-W, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TBF, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1): 013001.
https://doi.org/10.1088/1758-5090/8/1/013001 - Guarnieri S, Morabito C, Bevere M, Lanuti P, Mariggiò MA (2021) A protective strategy to counteract the oxidative stress induced by simulated microgravity on H9c2 cardiomyocytes. Oxidative Medicine and Cellular Longevity 2021(1).
https://doi.org/10.1155/2021/9951113 - Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Advanced Drug Delivery Reviews 97: 260–269.
https://doi.org/10.1016/j.addr.2015.11.019 - Huang B, Li D-G, Huang Y, Liu C-T (2018) Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research 5(1): 18.
https://doi.org/10.1186/s40779-018-0162-9 - Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD (2024) Cellular and molecular roles of reactive oxygen species in wound healing. Communications Biology 7(1): 1534.
https://doi.org/10.1038/s42003-024-07219-w - Kim YJ, Jeong AJ, Kim M, Lee C, Ye S-K, Kim S (2017) Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. BioMedical Engineering OnLine 16(1): 48.
https://doi.org/10.1186/s12938-017-0337-8 - Kouznetsov NV (2022) Cell responses to simulated microgravity and hydrodynamic stress can be distinguished by comparative transcriptomics. International Journal of Translational Medicine 2(3): 364–386.
https://doi.org/10.3390/ijtm2030029 - Lei S-Y, Qu Y, Yang Y-Q, Liu J-C, Zhang Y-F, Zhou S-Y, He Q-Y, Jin H, Yang Y, Guo Z-N (2024) Cellular senescence: a novel therapeutic target for central nervous system diseases. Biomedicine & Pharmacotherapy 179: 117311.
https://doi.org/10.1016/j.biopha.2024.117311 - Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E, Linari A, Palmerini MG, Familiari G, Aragona C, Bizzarri M, Macchiarelli G, Nottola, SA (2023) Effects of simulated microgravity in vitro on human metaphase II oocytes: an electron microscopy-based study. Cells 12(10): 1346.
https://doi.org/10.3390/cells12101346 - Milojević M, Maver U, Vihar B (2023) Recent advances in 3D printing in the design and application of biopolymer-based scaffolds. In Functional Biomaterials: Design and Development, T. Mohan and K.S. Kleinschek (eds), pp. 489–559. Weinheim, Germany: Wiley.
https://doi.org/10.1002/9783527827657.ch17 - Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA (2020) Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. International Journal of Molecular Sciences 21(10): 3638.
https://doi.org/10.3390/ijms21103638 - Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nature Biotechnology 32(8): 773–785.
https://doi.org/10.1038/nbt.2958 - Neje P, Taksande B, Umekar M, Mangrulkar S (2024) Influence of microgravity on cerebrovascular complications: exploring molecular manifestation and promising countermeasures. Microgravity Science and Technology 36(4): 46.
https://doi.org/10.1007/s12217-024-10131-x - Nguyen HP, Tran PH, Kim K-S, Yang S-G (2021) The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity 7(1): 44.
https://doi.org/10.1038/s41526-021-00171-7 - Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8(10): 839–845.
https://doi.org/10.1038/nrm2236 - Ran F, An L, Fan Y, Hang H, Wang S (2016) Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophysics Reports 2(5–6): 100–105.
https://doi.org/10.1007/s41048-016-0029-0 - Rudolf AM, Hood WR (2024) Mitochondrial stress in the spaceflight environment. Mitochondrion 76: 101855.
https://doi.org/10.1016/j.mito.2024.101855 - Sharma SN, Meller LLT, Sharma AN, Amsterdam EA (2023) Cardiovascular adaptations of space travel: a systematic review. Cardiology 148(5), 434–440.
https://doi.org/10.1159/000531466 - Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity 2019: 1–17.
https://doi.org/10.1155/2019/6175804 - Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Scientific Reports 9(1): 13012.
https://doi.org/10.1038/s41598-019-49671-3 - Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS (2025) Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomaterials Science 13(1): 93–129.
https://doi.org/10.1039/D4BM01192A - Tripathi S, Mandal SS, Bauri S, Maiti P (2023) 3D bioprinting and its innovative approach for biomedical applications. MedComm 4(1): e194.
https://doi.org/10.1002/mco2.194 - Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A (2022) The role of antioxidants in the interplay between oxidative stress and senescence. Antioxidants 11(7): 1224.
https://doi.org/10.3390/antiox11071224 - Wang N, Zuo Z, Meng T, Liu Y, Zheng X, Ma Y (2024) Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway. Journal of Orthopaedic Surgery and Research 19(1): 531.
https://doi.org/10.1186/s13018-024-05030-1 - Wuest SL, Richard S, Kopp S, Grimm D, Egli M (2015) Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed Research International 2015: 1–8.
https://doi.org/10.1155/2015/971474 - Xie Z, Gao M, Lobo AO, Webster TJ. (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers 12(8): 1717.
https://doi.org/10.3390/polym12081717 - Zhang X, Zhu H, Zhang J (2025) Oxidative stress on the ground and in the microgravity environment: pathophysiological effects and treatment. Antioxidants 14(2): 231.
https://doi.org/10.3390/antiox14020231