References
- Abdul-Baki AA, Anderson JO (1973) Vigour determination of soybean seed by multiple criteria. Crop Science 13:630–633. doi:10.2135/cropsci1973.0011183X001300060013.
- Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress conditions. American Eurasian Journal of Agricultural & Environmental Sciences 12:769–774. doi:10.5829/idosi.aejaes.2012.12.06.1755.
- Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2):85–100. doi: 10.1016/0098-8472(92)90034.
- Brown AH (1991) From gravity and the organism to gravity and the cell. ASGSB Bulletin: Publication of the American Society for Gravitational and Space Biology 4(2):7–18. pmid: 11537184.
- Bruns HA, Croy LI (1985) Root volume and root dry weight measuring system for wheat cultivars. Cereal Research Communication 13(2/3):177–183177-183. doi: jstor.org/stable/23782998.
- Davies R, Di Sacco A, Newton R (2015) Germination testing: procedures and evaluation. Technical Information Sheet_13a. Royal Botanic Gardens, Kew. doi: 10.13140/RG.2.2.29338.85440.
- Dhindsa RS, Plumb-Dhindsa PA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32(1):93–101. doi: 10.1093/jxb/32.1.93.
- Dixit JP, Jagtap SS, Kamble SM, Vidyasagar PB (2017) Effects of short-term hypergravity exposure are reversible in Triticum aestivum L. caryopses. Microgravity Science and Technology 29:343–350. doi: 10.1007/s12217-017-9553.
- Dixit JP, Jagtap SS, Vidyasagar PB (2022) Short-term hypergravity-induced changes in growth, photo synthetic parameters, and assessment of threshold values in heat (Triticum aestivum L.). Gravitational and Space Research 10(1):10–17. doi: 10.2478/gsr-2022-0002.
- dos Santos MA, Fachel FN, Nava MJ, Astarita LV, Collin P, Russomano T (2012) Effect of hypergravity simulation on carrot germination and growth. Aviation, Space, and Environmental Medicine 83(10):1011–1012. doi: 10.3357/asem.3476.2012.
- Frick EM, Strader LC (2018) Roles for IBA-derived auxin in plant development. Journal of Experimental Botany 69(2):169–177. doi: 10.1093/jxb/erx298.
- Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62(8):2827–2840. doi: 10.1093/jxb/erq457.
- Hansen H, Dörffling K (2003) Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance? Functional Plant Biology 30(4):365–375. doi:10.1071/FP02223.
- Hosamani R, Swamy BK, Dsouza A, Sathasivam M (2023) Plant responses to hypergravity: a comprehensive review. Planta 257(1):17. doi: 10.1007/s00425-022-04051-6.
- Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y (1996) Effects of hypergravity on growth and cell wall properties of cress hypocotyls. Journal of Experimental Botany 47(297):513–517. doi: 10.1016/j.phytochem.2014.08.022.
- Hugo A, Lester P (1984) Catalase in vitro. Methods in Enzymology 105:121–126. doi: 10.1016/s0076-6879(84)05016-3.
- International Seed Testing Association (1999) International rules for seed testing. Rules 1999 (No. Suppl).
- International Seed Testing Association (2015) International rules for seed testing, Vol. 215, Introduction, i-1-6 (10), Bassersdorf.
- Jagtap SS, Vidyasagar PB (2010) Effects of high gravity (g) values on growth and chlorophyll content in wheat. International Journal of Integrative Biology 9(3):128–130.
- Kasahara H, Shiwa M, Takeuchi Y, Yamada M (1995) Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls. Journal of Plant Research 108:59–64. doi: 10.1007/BF02344306.
- Kiss JZ (2015) Conducting plant experiments in space. Plant Gravitropism: Methods and Protocols:255–283. doi: 10.1007/978-1-4939-2697-8_19.
- Kittock DL, Law AG (1968) Relationship of seedling vigor to respiration and tetrazolium chloride reduction by germinating wheat seeds. Agronomy Journal 60(3):286–288. doi: 10.2134/agronj1968.00021962006000030012.
- Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Sato Y (2015) Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Scientific reports 5(1):13819. doi: 10.1038/srep13819.
- Meihong Y, Chunrong G, Kuanhu D, Xiang Z (2005) Effects of hypergravity on salt tolerance of alfalfa seedlings. Zhongguo Nong xue Tong bao. Chinese Agricultural Science Bulletin 21(11):16–18.
- Merkys A, Laurinavičius R (1991) Development of higher plants under altered gravitational con dltlons. Advances in space biology and medicine 1:155–181. doi: 10.1016/s1569-2574(08)60124-0.
- Mshelmbula B, Akomolafe G (2019) Preliminary effect of centrifugal force on germination and early growth of Maize (Zea mays L.). Transactions on Science and Technology 6(4):328–333.
- Nakabayashi I, Karahara I, Tamaoki D, Masuda K, Wakasugi T, Yamada K, Kamisaka S (2006) Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Annals of Botany 97(6):1083–1090. doi: org/10.1093/aob/mcl055.
- Nunes ACP, Santos GAD, Santos MAD, Russomano T, Santos OPD, Valente BMDRT, Resende MDVD (2018) Application of hypergravity in Eucalyptus and Corymbia seeds. Ciência Rural 48.
- Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69(8):1773–1781. doi: 10.1016/j.phytochem.2008.02.008.
- Russomano T, Rizzatti MR, Coelho RP, Scolari D, De Souza D, Pra-Veleda P (2007) Effects of simulated hypergravity on biomedical experiments. Ieee Engineering in Medicine and Biology Magazine 26(3):66–71. doi: 10.1109/memb.2007.364932.
- Sathasivam M, Hosamani R, Swamy BK (2021) Plant responses to real and simulated microgravity. Life Sciences in Space Research 28:74–86. doi: 10.1016/j.lssr.2020.10.001.
- Sathasivam M, Swamy BK, Krishnan K, Sharma R, Nayak SN, Uppar DS, Hosamani R (2022). Insights into the molecular basis of hypergravity-induced root growth phenotype in bread wheat (Triticum aestivum L.). Genomics 114(2):110307. doi: 10.1016/j.ygeno.2022.110307.
- Scherer GFE (2006) Halotolerance is enhanced in carrot callus by sensing hypergravity: influence of calcium modulators and cytochalasin D. Protoplasma 229:149–154. doi: 10.1007/s00709-006-0201-3.
- Soga K, Wakabayashi K, Hoson T, Kamisaka S (1999) Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant & cell physiology 40(6):581–585. doi: 10.1093/oxfordjournals.pcp.a029580.
- Sundararaj N, Nagraju S, Ramu MV (1972) Design and analysis of field experiments, University of Agricultural Sciences.
- Swamy BK, Hosamani R, Sathasivam M, Chandrashekhar SS, Reddy UG, Moger N (2021) Novel hypergravity treatment enhances root phenotype and positively influences physio-biochemical parameters in bread wheat (Triticum aestivum L.). Scientific reports 11(1):15303. doi: 10.1038/s41598-021-94771-8.
- Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. Journal of plant research 130:181–192. doi: 10.1007/s10265-016-0879.
- Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. Journal of plant research 130:181–192. doi: 10.1007/s10265-016-0879.
- Tamaoki D, Karahara I, Nishiuchi T, Wakasugi T, Yamada K, Kamisaka S (2011) Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. Journal of experimental botany 62(15):5463–5469. doi: 10.1093/jxb/err224.
- Tracy SR, Nagel AN, Postma JA, Fassbender H, Wasson A, Watt M (2020) Root system traits have ongoing value for global productivity pre-breeding and to their management using precision agriculture. Trend Plant Science 25:105–11.
- Ubeda-Tomás S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Current Biology 19(14):1194–1199. doi: 10.1016/j.cub.2009.06.023.
- Vidyasagar PB, Jagtap SS, Dixit JP, Kamble SM, Dhepe AP (2014) Effects of short-term hypergravity exposure on germination, growth and photosynthesis of Triticum aestivum L. Microgravity Science and Technology 26:375–384. doi: 10.1007/s12217-014-9400-2.
- Zaveri EB, Lobell D (2019) The role of irrigation in changing wheat yields and heat sensitivity in India. Nature communications 10(1):4144. doi: 10.1038/s41467-019-12183-9.