Have a personal or library account? Click to login

Transport Phenomena Research in Microgravity via the ISS National Lab to Benefit Life on Earth

Open Access
|Nov 2024

References

  1. Chien YC, Stocker DP, Hegde UG, Dunn-Rankin D (2022) Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flames. Combustion and Flame 246: 112443
  2. Dehghani P, de Ris JL, Quintiere JG (2023) Demonstrating steady burning for small flat materials in microgravity in a quiescent ambient. Proceedings of the Combustion Institute 39: 3949–3958
  3. Dietrich DL, Nayagam V, Hicks MC, Ferkul PV, Dryer FL, Farouk T, Shaw BD, Suh HK, Choi MY, Liu YC, Avedisian T, Williams FA (2014) Droplet combustion experiments aboard the international space station. Microgravity Science and Technology 26: 65–76
  4. Dietrich DL, Ross HD, Shu Y, Chang P, T’ien JS (2000) Candle flames in non-buoyant atmospheres. Combustion Science and Technology 156: 1–24
  5. Diez FJ, Aalburg C, Sunderland PB, Urban DL, Yuan ZG, Faeth GM (2009) Soot properties of laminar jet diffusion flames in microgravity. Combustion and Flame 156: 1514–1524
  6. Ferranti F, Bianco MD, Pacelli C (2021) Advantages and limitations of current microgravity platforms for Space Biology Research. Applied Sciences 11: 68
  7. Giassi D, Cao S, Bennett BAV, Stocker DP, Takahashi F, Smooke MD, Long MB (2016) Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity. Combustion and Flame 167: 198–206
  8. Irace PH, Lee HJ, Waddell K, Tan L, Stocker DP, Sunderland PB, Axelbaum RL (2021) Observations of long duration microgravity spherical diffusion flames aboard the International Space Station. Combustion and Flame 229: 111373
  9. Irace PH, Waddell KA, Constales D, Kim M, Yablonsky G, Sunderland PB, Axelbaum RL (2023a) On the existence of steady-state gaseous microgravity spherical diffusion flames in the presence of radiation heat loss. Proceedings of the Combustion Institute 39: 1721–1729
  10. Irace PH, Waddell KA, Constales D, Sunderland PB, Axelbaum RL (2023b) Critical temperature and reactant mass flux for radiative extinction of ethylene microgravity spherical diffusion flames at 1 bar. Proceedings of the Combustion Institute 39: 1905–1913
  11. Kim M, Waddell KA, Sunderland PB, Nayagam V, Stocker PB, Dietrich DL, Ju Y, Williams FA, Irace P, Axelbaum RL (2023) Spherical gas-fueled cool diffusion flames. Proceedings of the Combustion Institute 39: 1647–1656.
  12. Li Y, Liao YTT, Ferkul PV, Johnston MC, Bunnell C (2021) Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity. Combustion and Flame 227: 39–51.
  13. Mazzucato M, Robinson DKR (2018) Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbit. Technological Forecasting & Social Change 136: 166–177
  14. McCraney J, Kern V, Bostwick JB, Daniel S, Steen PH (2022b) Oscillations of Drops with Mobile Contact Lines on the International Space Station: Elucidation of Terrestrial Inertial Droplet Spreading. Physical Review Letters 129: 084501.
  15. McCraney J, Ludwicki J, Bostwick J, Daniel S, Steen P (2022a) Coalescence-induced droplet spreading: Experiments aboard the International Space Station. Physics of Fluids 34: 122110.
  16. Motil BJ, Ramè E, Salgi P, Taghavi M, Balakotaiah V (2020) Gas–liquid flows through porous media in microgravity: The International Space Station Packed Bed Reactor Experiment. AIChE Journal 67: e17031
  17. Mudawar I, Devahdhanush VS, Darges SJ, Hasan MM, Nahra HK, Balasubramaniam R, Mackey JR (2024) Microgravity flow boiling experiments with liquid-vapor mixture inlet onboard the International Space Station. International Journal of Heat and Mass Transfer 224: 125299
  18. Rojas-Alva U, Jomaas G (2022) A historical overview of experimental solid combustion research in microgravity. Acta Astronautica 194: 363–375
  19. Ronney PD (1998) Understanding combustion processes through microgravity research. Symposium (International) on Combustion 27: 2485–2506
  20. Sridhar K, Narayanan V, Bhavnani S (2023) Asymmetric Sawtooth and Cavity-Enhanced Nucleation-Driven Transport (ASCENT) Experiment aboard the International Space Station – Microgravity Outcomes. In 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Vol. 22, p 1–7.
  21. Sridhar K, Narayanan V, Bhavnani SH (2024) Enhanced heat transfer in microgravity from asymmetric sawtooth microstructure with engineered cavities. International Journal of Heat and Mass Transfer 222: 125158.
  22. Thomas VA, Prasad NS, Reddy CAM (2000) Microgravity research platforms. Current Science 79: 336–340
  23. Wagner E (2021) Research Flights on Blue Origin’s New Shepard. Gravitational and Space Research 9: 62–67
  24. Weislogel MM, Jenson R, Chen Y, Collicott SH, Klatte J, Dryer M (2009) The capillary flow experiments aboard the International Space Station: Status. Acta Astronautica 65: 861–869
  25. Yu J, Pawar A, Plawsky JL, Chao DF (2022) The effect of bubble nucleation on the performance of a wickless heat pipe in microgravity. npj Microgravity 8: 12
  26. Zea L, Warren L, Ruttley T, Mosher T, Kelsey L, Wagner E (2024) Orbital Reef and commercial low Earth orbit destinations—upcoming space research opportunities. npj Microgravity 10: 43
Language: English
Page range: 145 - 158
Published on: Nov 10, 2024
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Phillip H. Irace, Ryan D. Reeves, Shawn Stephens, Michael S. Roberts, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.