Have a personal or library account? Click to login
Pioneering the Approach to Understand a Trash-to-Gas Experiment in a Microgravity Environment Cover

Pioneering the Approach to Understand a Trash-to-Gas Experiment in a Microgravity Environment

Open Access
|May 2021

References

  1. Anthony S, Hintze P (2014) Trash-to-gas: determining the ideal technology for converting space trash into useful products. doi: ICES-2014-016.
  2. Caraccio A, Hintze P (2013) Trash-to-gas: converting space trash into useful products. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20130011661.pdf.
  3. Caraccio A, Hintze PE, Miles JD (2014) Human factor investigation of waste processing system during the HI-SEAS 4-month mars analog mission in support of NASA's logistic reduction and repurposing project: trash to gas. Available at: https://ntrs.nasa.gov/search.jsp?R=20140017442.
  4. Ewert M, Broyan J, Semones E, Goodliff K, Singleterry R. Jr, Abston L, Clowdsley M, Wittkopp C, Vitullo N, Chai P (2017) Comparing trash disposal to use as radiation shielding for a mars transit vehicle. doi: ICES-2017-178.
  5. Ewert MK, Broyan JL (2013) Mission benefits analysis of logistics reduction technologies.3383, 14–18. Available at: https://arc.aiaa.org/doi/pdf/10.2514/6.2013-3383.
  6. Fisher JW, Lee JM, Goeser J, Monje O (2018) Heat Melt Compactor Gas Contaminants from Single Waste Materials. Albuquerque, NM.
  7. Hintze P, Santiago-Maldonado E, Kulis M, Lytle J, Fisher J, Lee J, Vaccaro H, Ewert M, Broyan J (2012) Trash to supply gas (TtSG) project overview. In American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-5254.
  8. Hintze PE, Caraccio A, Anthony SM, DeVor R, Captain JG, Tsoras A, Nur M (2013) Trash-to-gas: using waste products to minimize logistical mass during long duration space missions. In AIAA SPACE Conference and Exposition. Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-5326.
  9. Linne DL, Palaszewski BA, Gokoglu SA, Balasubramaniam B, Hegde UG, Gallo C (2014) Waste management options for long-duration space missions: when to reject, reuse, or recycle. In 7th Symposium on Space Resource Utilization, AIAA SciTech Forum. doi: 10.2514/6.2014-0497.
  10. Liu J, He Y, Wang J, Wang J, Tao C, Yuen R, Li H (2019) Investigation on the combustion efficiency and residual of nitrocellulose-alcohol humectant mixtures. Journal of Thermal Analysis and Calorimetry 136 (Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.), 1807–16. doi: 10.1007/s10973-018-7817-3.
  11. Medina JAT, Meier AJ, Shah M, Rinderknecht D (2020) Waste conversion to usable gases for long duration space missions. 14. AIAA. doi: 10.2514/6.2020-4035.
  12. Meier A, Shah M, Medina JT (2019a) Microgravity Experimentation of Long Duration Space Mission Waste Conversion. Boston, MA. https://ttu-ir.tdl.org/handle/2346/84889.
  13. Meier A, Shah M, Quinn K, Engeling K (2019b) Demonstration of Plasma Assisted Waste Conversion to Gas. Available at: https://ttu-ir.tdl.org/handle/2346/84884.
  14. Meier AJ, Shah Mg, Medina JT, Rinderknecht D, Pitts RP (2020) Space mission waste conversion experiments at the zero gravity facility. 11.
  15. Olson SL (1987) The Effect of Microgravity on Flame Spread Over A Thin Fuel. Lewis Research Center, Ohio: Case Wester Reserve University. Available at: https://ntrs.nasa.gov/api/citations/19880006471/downloads/19880006471.pdf.
  16. Olson SL (1991) Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combustion Science and Technology 76(4–6), 233–49. doi: 10.1080/00102209108951711.
  17. Olson SL, Ruff GA, Miller FJ (2008) Microgravity flame spread in exploration atmospheres: pressure, oxygen, and velocity effects on opposed and concurrent flame spread. SAE International Journal of Aerospace 1(1), 239–46. doi: 10.4271/2008-01-2055.
  18. Olson SL, Stouffer SC, Grady T (1989) Diluent effects on quiescent microgravity flame spread over a thin solid fuel. Chemical and Physical Processes in Combustion, no. Copyright (C) 2020 American Chemical Society (ACS). All Rights Reserved.: 70/1–70/4.
  19. Randy Vander Wal, Bryg V, Hays M (n.d.) XPS Analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Analytical Chemistry. https://pubs.acs.org/doi/abs/10.1021/ac102365s. (Accessed December 29, 2020).
  20. Ruff G, Urban D (2016) Operation and Development Status of the Spacecraft Fire Experiments (Saffire). July. Available at: https://ttu-ir.tdl.org/handle/2346/67728.
  21. Serio M, Cosgrove J, Wójtowicz M, Lee J, Wignarajah K, Fisher J (2014b) Torrefaction processing of spacecraft solid wastes.
  22. Serio M, Cosgrove J, Wojtowicz M, Stapleton T, Torres M, Ewert M, Lee J (2018) A Prototype Torrefaction Processing Unit (TPU) for Human Solid Waste in Space. July. Available at: https://ttu-ir.tdl.org/handle/2346/74200.
  23. Serio M, Wojtowicz M, Cosgrove J, Stapleton T, Lee J (2019) Operational Data for a Full Scale Prototype Torrefaction Processing Unit (TPU) for Spacecraft. July. Available at: https://ttu-ir.tdl.org/handle/2346/84492.
  24. Serio M, Wójtowicz M, Cosgrove J, Stapleton T, Nalette T, Ewert M, Lee J, Fisher J (2016) Torrefaction Processing for Human Solid Waste Management. July. Available at: https://ttu-ir.tdl.org/handle/2346/67674.
  25. Serio MA, Cosgrove JE, Wójtowicz MA, Lee J, Fisher J (2014a) Use of Pyrolysis Processing for Trash to Supply Gas (TtSG). In 44th International Conference on Environmental Systems. Available at: https://ttu-ir.tdl.org/handle/2346/59668.
  26. Sutliff TJ, Otero AM, Urban DL (2002) Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox. 12.
  27. Turner MF, Fisher JW, Broyan J, Pace G (2014) Generation 2 heat melt compactor development. In 44th International Conference on Environmental Systems. Available at: https://ttu-ir.tdl.org/ttu-ir/handle/2346/59662.
  28. Wang Z, Hu K, Hu Y, Gui Z (2003) Thermal degradation of flame-retarded polyethylene/magnesium hydroxide/poly(ethylene-copropylene) elastomer composites. Polymer International 52(6), 1016–20. doi: 10.1002/pi.1188.
  29. Wetzel J, Surdyk R, Klopotic J, Rangan K (2018) Heat Melt Compactor Test Unit. July. Available at: https://ttu-ir.tdl.org/handle/2346/74255.
  30. Wheeler R, Hadley N, Dahl R, Abney M, Greenwood Z, Miller L, Medlen A (2012) Advanced Plasma Pyrolysis Assembly (PPA) reactor and process development. In 42nd International Conference on Environmental Systems. San Diego, California: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-3553.
  31. Wheeler R, Holtsnider J, Wambolt S, Abney M, Greenwood Z (2018) Plasma Pyrolysis Assembly (PPA) Zero-g Flight Experiment Development. July. Available at: https://ttu-ir.tdl.org/handle/2346/74078.
  32. Zasada F, Piskorz W, Stelmachowski P, Legutko P, Kotarba A, Sojka Z. (2015) Density functional theory modeling and time-of-flight secondary ion mass spectrometric and X-ray photoelectron spectroscopic investigations into mechanistic key events of coronene oxidation: toward molecular understanding of soot combustion. The Journal of Physical Chemistry C 119(12), 6568–80. doi: 10.1021/jp512018z.
Language: English
Page range: 68 - 85
Published on: May 24, 2021
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Anne J. Meier, David Rinderknecht, Joel Olson, Malay G. Shah, Jaime A. Toro Medina, Ray P. Pitts, Rodolphe V. Carro, Jonathan R. Gleeson, Jake Hochstadt, Evan A. Bell, Emily A. Forrester, Mirielle Kruger, Deborah Essumang, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.