Have a personal or library account? Click to login
Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity Cover

Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity

By: Musa Çakmak and  Mevlüt Tunç  
Open Access
|Nov 2023

References

  1. M. U. Awan, N. Akhtar, S. Iftikhar, et al., New Hermite Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., vol. 125, 2020. https://doi.org/10.1186/s13660-020-02393-x
  2. W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., vol. 23, 1978, 13-20.
  3. W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev Anal. Numer. Thkor. Approx., vol. 22, 1993, 39-51.
  4. S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., vol. 21, 1995, 335-241.
  5. S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. Inequal. Appl., vol. 5, no. 6, 2000, 533-579. Available online at http://dx.doi.org/10.1155/S102558340000031X.
  6. E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel, Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, 1985, 138-142.
  7. H. Hudzik, L. Maligranda, Some remarks on sconvex functions, Aequationes Math., vol. 48, 1994, 100-111.
  8. D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, KluwerAcademic, Dordrecht, 1993.
  9. M. Bombardelli, S. Varošanec, Properties of hconvex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., vol. 58, 2009, 1869-1877.
  10. M. Z. Sarıkaya, A. Sağlam, H. Yıldırım, On some Hadamard-type inequalities for hconvex functions, J. Math. Inequal., vol. 2, no. 3, 2008, 335-341.
  11. M. Z. Sarıkaya, E. Set, M. E.Özdemir, On some new inequalities of Hadamard-type involving hconvex functions, Acta Math. Univ. Comenian LXXIX, no. 2, 2010, 265-272.
  12. M. E.Özdemir, M. Gürbüz, A. O. Akdemir, Inequalities for hConvex Functions via Further Properties, RGMIA Research Report Collection, vol. 14, article 22, 2011.
  13. M. Bessenyei, The Hermite-Hadamard inequality on simplices, Amer. Math. Monthly, vol. 115, no. 4, 2008, 339-345. MR 2009b:52023
  14. M. Bessenyei, Hermite-Hadamard-type inequalities for generalized convex functions, J. Inequal. Pure Appl. Math., vol. 9, no. 3, 2008, Article 63, pp. 51 (electronic).
  15. M. Bessenyei, The Hermite-Hadamard inequality in Beckenbach’s setting, J. Math. Anal. Appl., vol. 364, no. 2, 2010, 366-383. MR2576189
  16. P. Burai, A. Házy, On Orlicz-convex functions, Proc. 12th Symp. Math. Appl. (November 5-7, 2009, University of Timioara), Editura Politechnica, 2010, 73-79.
  17. P. Burai, A. Házy, On approximately hconvex functions, J. Convex Anal., vol. 18, no. 2, 2011, 447-454.
  18. P. Burai, A. Házy, T. Juhász, Bernstein-Doetsch type results for sconvex functions, Publ. Math. Debrecen, vol. 75, no. 1-2, 2009, 23-31.
  19. P. Burai, A. Házy, T. Juhász, On approximately Breckner sconvex functions, Control Cybernet., vol. 40, no. 1, 2011, 91-99.
  20. M. Bessenyei, Zs. Páles, Higher-order generalizations of Hadamard’s inequality, Publ. Math. Debrecen, vol. 61, no. 3-4, 2002, 623-643. MR 2003k:26021
  21. M. Bessenyei, Zs. Páles, Characterizations of convexity via Hadamard’s inequality, Math. Inequal. Appl., vol. 9, no. 1, 2006, 53-62. MR 2007a:26010
  22. A. Házy, Bernstein-Doetsch type results for hconvex functions, Math. Inequal. Appl., vol. 14, no. 3, 2011, 499-508.
  23. S. Hussain, J. Khalid, Y.-M. Chu, Some generalized fractional integral Simpson’s type inequalities with applications, J. AIMS Mathematics, vol. 5, no. 6, 2020, 5859-5883. doi: 10.3934/math.2020375
  24. M. A. Khan, A. Iqbal, M. Suleman, Y.-M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green’s function, J. Inequal. Appl., vol. 161, 2018. https://doi.org/10.1186/s13660-018-1751-6
  25. Y. Khurshid, M. A. Khan, Y.-M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via ηconvex functions, J. AIMS Mathematics, vol. 5, no. 5, 2020, 5106-5120. doi: 10.3934/math.2020328
  26. B. G. Pachpatte, Mathematical Inequalities, North-Holland Mathematical Library, Elsevier Science B. V. Amsterdam, 2005.
  27. J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, 1991.
  28. M. Tunç, Some Hadamard-Like Inequalities via Convex and sConvex Functions and their Applications for Special Means, Mediterr. J. Math., vol. 11, 2014, 1047. https://doi.org/10.1007/s00009-013-0373-y
  29. M. Tunç, On new inequalities for hconvex functions via Riemann-Liouville fractional integration, Filomat, vol. 27, no. 4, 2013, 559-565.
  30. S. Varošanec, On hconvexity, J. Math. Anal. Appl., vol. 326, no. 1, 2007, 303-311.
  31. P. Yan, Qi Li, Y.-M. Chu, S. Mukhtar, S. Waheed, On some fractional integral inequalities for generalized strongly modified hconvex functions, J. AIMS Mathematics, vol. 5, no. 6, 2020, 6620-6638. doi: 10.3934/math.2020426
  32. S.-S. Zhou, S. Rashid, M. A. Noor, K. I. Noor, F. Safdar, Y.-M. Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, J. AIMS Mathematics, vol. 5, no. 6, 2020, 6874-6901. doi: 10.3934/math.2020441
DOI: https://doi.org/10.2478/gm-2022-0006 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 77 - 95
Submitted on: May 20, 2021
Accepted on: Jul 13, 2022
Published on: Nov 24, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Musa Çakmak, Mevlüt Tunç, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.