Have a personal or library account? Click to login
Simple Operator Asynchronicity of an Integral Transform with Applications Cover

Simple Operator Asynchronicity of an Integral Transform with Applications

Open Access
|Nov 2023

Abstract

For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ) we consider the following integral transform 𝒟(w,μ)(T):=0w(λ)(λ+T)1dμ(λ), \mathcal{D}\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right){{\left( {\lambda + T} \right)}^{ - 1}}d\mu \left( \lambda \right)} , where the integral is assumed to exist for T a positive operator on a complex Hilbert space H.

We show among others that, if B, A > 0, then [𝒟(w,μ)(A)𝒟(w,μ)(B)](BA)=0w(λ)(01[λ+(1t)B+tA)1(BA)]2dt)dμ(λ). \matrix{{\left[{\mathcal{D}\left({w,\mu}\right)\left(A\right)-\mathcal{D}\left({w,\mu}\right)\left(B\right)}\right]\left({B-A}\right)}\cr{=\int_0^\infty{w\left(\lambda\right)\left({\int_0^1{{{\left[{\lambda+\left({1-t}\right)B+tA{)^{-1}}\left({B-A}\right)}\right]}^2}dt}}\right)d\mu\left(\lambda\right).}}\cr} We also provide some sufficient conditions for the operators A, B > 0 such that the inequality 𝒟(w,μ)(A)B+𝒟(w,μ)(B)AA𝒟(w,μ)(A)+B𝒟(w,μ)(B) \mathcal{D}\left({w,\mu}\right)\left(A\right)B+\mathcal{D}\left({w,\mu}\right)\left(B\right)A{\ge}A\mathcal{D}\left({w,\mu}\right)\left(A\right)+B\mathcal{D}\left({w,\mu}\right)\left(B\right) holds. Some examples for power and logarithmic functions are also provided.

DOI: https://doi.org/10.2478/gm-2022-0007 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 97 - 110
Submitted on: Sep 27, 2022
Accepted on: Oct 28, 2022
Published on: Nov 24, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Silvestru Sever Dragomir, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.