References
- [1] E.S. Aqlan, Some Problems Connected with Geometric Function Theory, Ph.D. Thesis, Pune University, Pune, 2004.
- [2] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II, Surveys in Mathematics and its Applications, vol. 3, 2008, 67–77.
- [3] W. G. Atshan, Application of fractional calculus operators for a new class of univalent functions with negative coefficients defined by Hohlov operator, Mathematica Slovaca, vol.60, no.1, 2010, 75–82.10.2478/s12175-009-0168-6
- [4] W. G. Atshan, R. H. Buti, Fractional calculus of a class of univalent functions with negative coefficients defined by Hadamard product with Rafid-Operator, European Journal of Pure and Applied Mathematics, vol.4, no.2, 2011, 162–173.
- [5] W. G. Atshan, S. R. Kulkarni, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative I, J. Rajasthan Acad. Phy. Sci., vol.6, no.2, 2007, 129–140.
- [6] W. G. Atshan, S. R. Kulkarni, Application of fractional derivatives and hypergeometric functions to multivalent analytic functions, Far East Journal of Mathematical Sciences (FJMS), vol. 27, no. 2, 2007, 277–294.
- [7] W. G. Atshan, S. R. Kulkarni, Neighborhoods and partial sums of subclass of k-uniformly convex functions and related class of k-starlike functions with negative coefficients based on integral operator, Southeast Asian Bulletin of Mathematics, vol. 33, 2009, 623–637.
- [8] W. G. Atshan, S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 2, 2009, Article 53, 11 pp.
- [9] P. L. Duren, Univalent Functions, Grundelheren der Mathematischen Wissenchaften 259, Springer - Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [10] S. Kanas, A. Wisniowska, Conic regions and k-uniformly convexity II, Folia Sci. Tech. Reso., 178, 1998, 65–78.
- [11] Y. Komato, On analytic prolongation of a family of operators, Mathematica (Cluj), vol. 39, no. 55, 1990, 141–145.
- [12] M. Nunokawa, A sufficient condition for univalence and starlikeness, Proc. Japan Acad. Ser. A Math. Sci., vol. 65, 1989, 163–164.10.3792/pjaa.65.163
- [13] S. Owa, M. Nunokawa, H. M.Srivastava, A certain class of multivalent functions, Appl. Math. Lett., vol. 10, no. 2, 1997, 7–10.10.1016/S0893-9659(97)00002-5
- [14] T. Rosy, K. G. Subramanian, G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, J. Inequal. Pure and Appl. Math., vol. 4, no. 4, 2003, 1–8.
- [15] S. Shams, S. R. Kulkarni, A class of univalent functions with negative and fixed finitely many coefficients, Acta Cienica Indica, XXXIXM, vol. 3, 2003, 587–594.
- [16] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., vol. 51, 1975, 109–116.10.1090/S0002-9939-1975-0369678-0
- [17] H. M. Srivastava, Distortion Inequalities for analytic and univalent functions associated with certain fractional calculus and other linear operators, (In Analytic and Geometric Inequalities and Applications eds. T. M. Rassias and H. M. Srivastava), Kluwar Academic Publishers, vol. 478, 1999, 349–374.10.1007/978-94-011-4577-0_21
- [18] H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, vol. 118, 2001, 1–52.10.1016/S0096-3003(99)00208-8
- [19] A. Tehranchi, S. R. Kulkarni, Study of the class of univalent functions with negative coefficients defined by Ruscheweyh derivatives (II), J. Rajasthan Academy of Physical Sciences, vol. 5, no. 1, 2006, 105–118.