Have a personal or library account? Click to login
Some applications of generalized Ruscheweyh derivatives involving a general fractional derivative operator to a class of analytic functions with negative coefficients II Cover

Some applications of generalized Ruscheweyh derivatives involving a general fractional derivative operator to a class of analytic functions with negative coefficients II

Open Access
|Jul 2020

Abstract

In this paper, we study a class of univalent functions f as defined by making use of the generalized Ruscheweyh derivatives involving a general fractional derivative operator, satisfying

Re{z(J1λ,μf(z))'(1-γ)J1λ,μf(z)+γz2(J1λ,μf(z))''}>β.{\mathop{\rm Re}\nolimits} \left\{{{{z\left({{\bf{J}}_1^{\lambda,\mu}f\left(z \right)} \right)'} \over {\left({1 - \gamma} \right){\bf{J}}_1^{\lambda,\mu}f\left(z \right) + \gamma {z^2}\left({{\bf{J}}_1^{\lambda,\mu}f\left(z \right)} \right)''}}} \right\} > \beta.

A necessary and sufficient condition for a function to be in the class Aγλ,μ,ν(n,β)A_\gamma ^{\lambda,\mu,\nu}\left({n,\beta} \right) is obtained. Also, our paper includes linear combination, integral operators and we introduce the subclass Aγ,cmλ,μ,ν(1,β)A_{\gamma,{c_m}}^{\lambda,\mu,\nu}\left({1,\beta} \right) consisting of functions with negative and fixed finitely many coefficients. We study some interesting properties of Aγ,cmλ,μ,ν(1,β)A_{\gamma,{c_m}}^{\lambda,\mu,\nu}\left({1,\beta} \right).

DOI: https://doi.org/10.2478/gm-2020-0007 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 85 - 103
Submitted on: Feb 8, 2010
Accepted on: Jul 12, 2010
Published on: Jul 31, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Waggas Galib Atshan, S. R. Kulkarni, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.