References
- Anguelov D, Dulong C, Filip D, Frueh C, Lafon S, Lyon R, Ogale A, Vincent L, Weaver J, (2010), Google Street View: Capturing the World at Street Level. Computer, 43, (6):32–38. ISSN 0018-9162. doi: 10.1109/mc.2010.170.
- Antrop M, Van Eetvelde V, (2000), Holistic aspects of suburban landscapes: visual image interpretation and landscape metrics. Landscape and Urban Planning, 50, (1–3):43–58. ISSN 0169-2046. doi: 10.1016/s0169-2046(00)00079-7.
- Belmahdi HS, Djemili A, (2022), Urban landscape structure anatomy: Structure patterns and typology identification in the space-time of Setif City, Algeria. Frontiers of Architectural Research, 11, (3):421–439. ISSN 2095-2635. doi: 10.1016/j.foar.2021.12.004.
- Biljecki F, Ito K, (2021), Street view imagery in urban analytics and GIS: A review. Landscape and Urban Planning, 215: 104217. ISSN 0169-2046. doi: 10.1016/j.landurbplan.2021.104217.
- Chen X, Meng Q, Hu D, Zhang L, Yang J, (2019), Evaluating Greenery around Streets Using Baidu Panoramic Street View Images and the Panoramic Green View Index. Forests, 10, (12):1109. ISSN 1999-4907. doi: 10.3390/f10121109.
- Curtis JW, Curtis A, Mapes J, Szell AB, Cinderich A, (2013), Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates. International Journal of Health Geographics, 12, (1):53. ISSN 1476-072X. doi: 10.1186/1476-072x-12-53.
- Dong R, Zhang Y, Zhao J, (2018), How Green Are the Streets Within the Sixth Ring Road of Beijing? An Analysis Based on Tencent Street View Pictures and the Green View Index. International Journal of Environmental Research and Public Health, 15, (7):1367. ISSN 1660-4601. doi: 10.3390/ijerph15071367.
- Fang YN, Tian J, Namaiti A, Zhang S, Zeng J, Zhu X, (2024), Visual aesthetic quality assessment of the streetscape from the perspective of landscape-perception coupling. Environmental Impact Assessment Review, 106:107535. ISSN 0195-9255. doi: 10.1016/j.eiar.2024.107535.
- Ferrini F, Fini A, Mori J, Gori A, (2020), Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability, 12, (10):4247. ISSN 2071-1050. doi: 10.3390/su12104247.
- Fox EW, Ver Hoef JM, Olsen AR, (2020), Comparing spatial regression to random forests for large environmental data sets. PLOS ONE, 15, (3):e0229509. ISSN 1932-6203. doi: 10.1371/journal.pone.0229509.
- Hao N, Li X, Han D, Nie W, (2024), Quantifying the Impact of Street Greening during Full-Leaf Seasons on Emotional Perception: Guidelines for Resident Well-Being. Forests, 15, (1): 119. ISSN 1999-4907. doi: 10.3390/f15010119.
- Holy-Hasted W, Burchell B, (2022), Does public space have to be green to improve well-being? An analysis of public space across Greater London and its association to subjective wellbeing. Cities, 125:103569. ISSN 0264-2751. doi: 10.1016/j.cities.2022.103569.
- Hu Y, Wu Y, Tantian Z, Sun G, (2024), Capturing urban green view with mobile crowd sensing. Ecological Informatics, 81: 102640. ISSN 1574-9541. doi: 10.1016/j.ecoinf.2024.102640.
- Huang D, Jiang B, Yuan L, (2022), Analyzing the effects of nature exposure on perceived satisfaction with running routes: An activity path-based measure approach. Urban Forestry & Urban Greening, 68:127480. ISSN 1618-8667. doi: 10.1016/j.ufug.2022.127480.
- Jennings V, Bamkole O, (2019), The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. International Journal of Environmental Research and Public Health, 16, (3):452. ISSN 1660-4601. doi: 10.3390/ijerph16030452.
- Jiang Y, Liu D, Ren L, Grekousis G, Lu Y, (2024), Tree abundance, species richness, or species mix? Exploring the relationship between features of urban street trees and pedestrian volume in Jinan, China. Urban Forestry & Urban Greening, 95: 128294. ISSN 1618-8667. doi: 10.1016/j.ufug.2024.128294.
- Jin B, Geng J, Ke S, Pan H, (2023), Analysis of spatial variation of street landscape greening and influencing factors: an example from Fuzhou city, China. Scientific Reports, 13, (1). ISSN 2045-2322. doi: 10.1038/s41598-023-49308-6.
- Kameoka T, Uchida A, Sasaki Y, Ise T, (2022), Assessing streetscape greenery with deep neural network using Google Street View. Breeding Science, 72, (1):107–114. ISSN 1347-3735. doi: 10.1270/jsbbs.21073.
- Kaplan R, Kaplan S, (1989), The experience of nature: A psychological perspective. Cambridge university press.
- Keshtkaran R, (2019), Urban landscape: A review of key concepts and main purposes. International Journal of Development and Sustainability, 8, (2):141–168.
- Labib S, Huck JJ, Lindley S, (2021), Modelling and mapping eyelevel greenness visibility exposure using multi-source data at high spatial resolutions. Science of The Total Environment, 755:143050. ISSN 0048-9697. doi: 10.1016/j.scitotenv.2020.143050.
- Lachowycz K, Jones AP, (2013), Towards a better understanding of the relationship between greenspace and health: Development of a theoretical framework. Landscape and Urban Planning, 118:62–69. ISSN 0169-2046. doi: 10.1016/j.landurbplan.2012.10.012.
- Li X, Zhang C, Li W, Kuzovkina YA, Weiner D, (2015), Who lives in greener neighborhoods? The distribution of street greenery and its association with residents’ socioeconomic conditions in Hartford, Connecticut, USA. Urban Forestry & Urban Greening, 14, (4):751–759. ISSN 1618-8667. doi: 10.1016/j.ufug.2015.07.006.
- Li Y, Peng L, Wu C, Zhang J, (2022), Street View Imagery (SVI) in the Built Environment: A Theoretical and Systematic Review. Buildings, 12, (8):1167. ISSN 2075-5309. doi: 10.3390/buildings12081167.
- Liu Y, Pan X, Liu Q, Li G, (2023), Establishing a Reliable Assessment of the Green View Index Based on Image Classification Techniques, Estimation, and a Hypothesis Testing Route. Land, 12, (5):1030. ISSN 2073-445X. doi: 10.3390/land12051030.
- Ode Ä, Tveit MS, Fry G, (2008), Capturing Landscape Visual Character Using Indicators: Touching Base with Landscape Aesthetic Theory. Landscape Research, 33, (1):89–117. ISSN 1469-9710. doi: 10.1080/01426390701773854.
- Ode Ä, Fry G, Tveit MS, Messager P, Miller D, (2009), Indicators of perceived naturalness as drivers of landscape preference. Journal of Environmental Management, 90, (1):375–383. ISSN 0301-4797. doi: 10.1016/j.jenvman.2007.10.013.
- Ode Ä, Hagerhall CM, Sang N, (2010), Analysing Visual Landscape Complexity: Theory and Application. Landscape Research, 35, (1):111–131. ISSN 1469-9710. doi: 10.1080/01426390903414935.
- Pradana MR, Dimyati M, (2024), Tracking Urban Sprawl: A Systematic Review and Bibliometric Analysis of Spatio-Temporal Patterns Using Remote Sensing and GIS. European Journal of Geography, 15, (3):190–203. ISSN 1792-1341. doi: 10.48088/ejg.m.pra.15.3.190.203.
- Qi Z, Duan J, Su H, Fan Z, Lan W, (2023), Using crowdsourcing images to assess visual quality of urban landscapes: A case study of Xiamen Island. Ecological Indicators, 154:110793. ISSN 1470-160X. doi: 10.1016/j.ecolind.2023.110793.
- Qureshi S, Breuste JH, Lindley SJ, (2010), Green Space Functionality Along an Urban Gradient in Karachi, Pakistan: A Socio-Ecological Study. Human Ecology, 38, (2):283–294. ISSN 1572-9915. doi: 10.1007/s10745-010-9303-9.
- Rui J, (2023), Measuring streetscape perceptions from driveways and sidewalks to inform pedestrian-oriented street renewal in Düsseldorf. Cities, 141:104472. ISSN 0264-2751. doi: 10.1016/j.cities.2023.104472.
- Setiawan W, Amar, (2021), Spatial Perception towards Social Conflicts and the Built Environment in Indonesia. International Review for Spatial Planning and Sustainable Development, 9, (2):134–150. ISSN 2187-3666. doi: 10.14246/irspsdc.9.2_134.
- Simpson J, Freeth M, Simpson KJ, Thwaites K, (2018), Visual engagement with urban street edges: insights using mobile eye-tracking. Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 12, (3):259–278. ISSN 1754-9183. doi: 10.1080/17549175.2018.1552884.
- Sun D, Ji X, Gao W, Zhou F, Yu Y, Meng Y, Yang M, Lin J, Lyu M, (2023), The Relation between Green Visual Index and Visual Comfort in Qingdao Coastal Streets. Buildings, 13, (2):457. ISSN 2075-5309. doi: 10.3390/buildings13020457.
- Tiara S, Gamal A, (2021), The Correlation Between Spatial Configuration and User Satisfaction: A Case Study of an Activitybased vs a Conventional Office. International Journal on Advanced Science, Engineering and Information Technology, 11, (2):648–655. ISSN 2088-5334. doi: 10.18517/ijaseit.11.2.12643.
- Tong M, She J, Tan J, Li M, Ge R, Gao Y, (2020), Evaluating Street Greenery by Multiple Indicators Using Street-Level Imagery and Satellite Images: A Case Study in Nanjing, China. Forests, 11, (12):1347. ISSN 1999-4907. doi: 10.3390/f11121347.
- Ulrich RS, (1986), Human responses to vegetation and landscapes. Landscape and Urban Planning, 13:29–44. ISSN 0169-2046. doi: 10.1016/0169-2046(86)90005-8.
- van den Berg AE, Koole SL, van der Wulp NY, (2003), Environmental preference and restoration: (How) are they related? Journal of Environmental Psychology, 23, (2):135–146. ISSN 0272-4944. doi: 10.1016/s0272-4944(02)00111-1.
- Wang J, Liu W, Gou A, (2022), Numerical characteristics and spatial distribution of panoramic Street Green View index based on SegNet semantic segmentation in Savannah. Urban Forestry & Urban Greening, 69:127488. ISSN 1618-8667. doi: 10.1016/j.ufug.2022.127488.
- Wu J, Wang B, Ta N, Zhou K, Chai Y, (2020), Does street greenery always promote active travel? Evidence from Beijing. Urban Forestry & Urban Greening, 56:126886. ISSN 1618-8667. doi: 10.1016/j.ufug.2020.126886.
- Wu L, Dong Q, Luo S, Jiang W, Hao M, Chen Q, (2021), Effects of Spatial Elements of Urban Landscape Forests on the Restoration Potential and Preference of Adolescents. Land, 10, (12): 1349. ISSN 2073-445X. doi: 10.3390/land10121349.
- Wu Z, Xu K, Li Y, Zhao X, Qian Y, (2024), Application of an Integrated Model for Analyzing Street Greenery through Image Semantic Segmentation and Accessibility: A Case Study of Nanjing City. Forests, 15, (3):561. ISSN 1999-4907. doi: 10.3390/f15030561.
- Xu H, Lu H, Liu S, (2024), Online Street View-Based Approach for Sky View Factor Estimation: A Case Study of Nanjing, China. Applied Sciences, 14, (5):2133. ISSN 2076-3417. doi: 10.3390/app14052133.
- Xue C, Jin C, Zhou L, Li G, (2022), Exploring the distribution of city street greenery from eye-level: an application of Baidu Map panoramic images data. Geografisk Tidsskrift-Danish Journal of Geography, 122, (1):73–86. doi: 10.1080/00167223.2021.2019073.
- Yu X, Qi W, (2021), Measuring vegetation greenery in park using iPhone panoramic image and a new green vegetation extraction index. Urban Forestry & Urban Greening, 65:127310. ISSN 1618-8667. doi: 10.1016/j.ufug.2021.127310.
- Zhang L, Wang L, Wu J, Li P, Dong J, Wang T, (2023), Decoding urban green spaces: Deep learning and google street view measure greening structures. Urban Forestry & Urban Greening, 87:128028. ISSN 1618-8667. doi: 10.1016/j.ufug.2023.128028.
- Zhang W, Zeng H, (2024), Spatial differentiation characteristics and influencing factors of the green view index in urban areas based on street view images: A case study of Futian District, Shenzhen, China. Urban Forestry & Urban Greening, 93: 128219. ISSN 1618-8667. doi: 10.1016/j.ufug.2024.128219.
- Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A, (2017), Scene Parsing through ADE20K Dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 5122–5130. doi: 10.1109/cvpr.2017.544.
- Zhou B, Lapedriza A, Khosla A, Oliva A, Torralba A, (2018), Places: A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, (6):1452–1464. ISSN 1939-3539. doi: 10.1109/tpami.2017.2723009.
- Zhou B, Zhao H, Puig X, Xiao T, Fidler S, Barriuso A, Torralba A, (2019), Semantic Understanding of Scenes Through the ADE20K Dataset. International Journal of Computer Vision, 127, (3):302–321. ISSN 1573-1405. doi: 10.1007/s11263-018-1140-0.
- Zhu H, Nan X, Yang F, Bao Z, (2023), Utilizing the green view index to improve the urban street greenery index system: A statistical study using road patterns and vegetation structures as entry points. Landscape and Urban Planning, 237:104780. ISSN 0169-2046. doi: 10.1016/j.landurbplan.2023.104780.