McCann P, Ortega-Argilés R. Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. Regional Studies. 3rd August 2015;49(8):1291-302.
Foray D. Smart specialisation: opportunities and challenges for regional innovation policy. London ; New York: Routledge Taylor & Francis Group; 2015. 103 s.
Asheim B, Grillitsch M, Trippl M. Smart Specialization as an Innovation-Driven Strategy for Economic Diversification: Examples From Scandinavian Regions. W: Advances in the Theory and Practice of Smart Specialization [Internet]. Elsevier; 2017 [citation: August 2023]. s. 73-97. Available at: https://linkinghub.elsevier. com/retrieve/pii/B9780128041376000048
Borseková K, Vaňová A, Vitálišová K. Smart Specialization for Smart Spatial Development: Innovative Strategies for Building Competitive Advantages in Tourism in Slovakia. Socio-Econ. Plan. Sci. 2017;58:39-50.
Asheim BT, Boschma R, Cooke P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011;45(7):893-904.
Nowakowska AE. New idea of building regional innovative capacities-smart specialisations. Folia Oeconomica [Internet]. 8 sierpień 2016 [cit. august 2023];2(320). Available at: https:// czasopisma.uni.lodz.pl/foe/article/ view/328
Trippl M, Zukauskaite E, Healy A. Shaping smart specialization: the role of place-specific factors in advanced, intermediate and less-developed European regions. Reg. Stud. 2020;54(10):1328-40.
Sotarauta M. Smart specialization and place leadership: dreaming about shared visions, falling into policy traps? Reg. Stud. Reg. Sci. 2018;5(1):190-203.
Kudzin MH, Boguń M, Mrozińska Z, Kaczmarek A. Physical Properties, Chemical Analysis, and Evaluation of Antimicrobial Response of New Polylactide/Alginate/Copper Composite Materials. Mar. Drugs. 2020; 18: 660.;
Guzińska K, Kaźmierczak D, Dymel M, Pabjańczyk-Wlazło E, Boguń M. Anti-bacterial materials based on hyaluronic acid: Selection of research methodology and analysis of their anti-bacterial properties. Mat. Sci. Eng. C. 2018; 93.
Pabjańczyk-Wlazło E, Król P, Krucińska I, Chrzanowski M, Puchalski M, Szparaga G, et al. Bioactive nanofibrous structures based on hyaluronic acid. Advances. In Polym. Tech. 2018; 37:6
Harsanto B, Primiana I, Sarasi V, Satyakti Y. Sustainability Innovation in the Textile Industry: A Systematic Review. Sustainability. 2023; 15(2):1549.
Yeo JCC, Muiruri K, Thitsartarn W, Li Z, He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mat. Sci. Eng. C. 2018; 92: 1092-116.
Pantani R, Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013; 98(5): 1089-96
ISO 9439: 1999. Water quality — Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium — Carbon dioxide evolution test; 1999.
ISO 14852:2021. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by analysis of evolved carbon dioxide; 2021.
ISO 14851:2019. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer; 2019.
ADTM D5338. Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures, 2021.
ISO 14855:2018. Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions — Method by analysis of evolved carbon dioxide — Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test; 2018.
EN 14046:2003. Evaluation of the ultimate aerobic biodegradability and disintegration of packaging materials under controlled composting conditions-Method by analysis of released carbon dioxide; 2003.
EN 13432:2002. Packaging. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging; 2002.
ISO 17556:2019. Plastics — Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved; 2019.
DIN EN ISO 11721-1:2001. Textiles — Determination of resistance of cellulose-containing textiles to micro-organisms — Soil burial test — Part 1: Assessment of rot-retardant finishing; 2001.
ISO 21701:2019 Textiles —Test method for accelerated hydrolysis of textile materials and biodegradation under controlled composting conditions of the resulting hydrolysate; 2019.
Kowalski K, Matera R, Sokołowicz ME. Cotton Matters. A Recognition and Comparison of the Cottonopolises in Central-Eastern Europe during the Industrial Revolution. FTEE. 2018;26(6(132)):16-23.
Walker AR. Lodz: The Problems Associated with Restructuring the Urban Economy of Poland’s Textile Metropolis in the 1990s. Urban Studies. 1993;30(6):1065-80.
Jewtuchowicz A, Suliborski A. Struktura gospodarcza Łodzi w latach 1918-1989.In: In S Liszewski (Ed), Łódź Monografia miasta. (in Polish) Łódź: Łódzkie Towarzystwo Naukowe; 2009. pp. 297-33.
Hajdys D, Jabłońska M, Ślebocka M. Impact of Textile Industry Restructuring on the Financial Condition of Local Government Units for the Example of the Łódź Region in Poland. FTEE 2020;28(5(143)):8-19.
Nowakowska A, Walczak B. Dziedzictwo przemysłowe jako kapitał terytorialny. Przykład Łodzi. (in Polish) GPT [https:// czasopisma.uni.lodz.pl/gospodarka/ article/view/2072]. 29 wrzesień 2016 [July 2023].
Regionalne Obserwatorium Terytorialne (ROT). Stworzenie narzędzi do monitorowania innowacyjności regionu łódzkiego z wykorzystaniem procesu przedsiębiorczego odkrywania. (in Polish) 2017.
Yilmaz N, Karaalp-Orhan H. Comparative Advantage of Textiles and Clothing: Evidence for Top Exporters in Eastern Europe. F&TinEE. 2015;23(6(114)):8-13.
Dziuba R, Kucharska M, Madej-Kiełbik L, Sulak K, Wiśniewska-Wrona M. Biopolymers and biomaterials for special applications within the context of the circular economy. Materials. 2021; 14 (24):7704-18.
Sharma N, Allardyce B, Rajkhowa R, Adhileya A, Agrawal R. A Substantial Role of Agro-Textiles in Agricultural Applications. Front Plant Sci. 2022; 13:895740-50.
Skrzetuska E, Puszkarz A, Nosal J. Assessment of the Impact of the Surface Modification Processes of Cotton and Polyester Fabrics with Various Techniques on Their Structural, Biophysical, Sensory, and Mechanical Properties. Polymers. 2022; 14 (4): 796-822,
Bartkowiak G, Dąbrowska A, Greszta A. Development of Smart Textile Materials with Shape Memory Alloys for Application in Protective Clothing. Materials. 2020; 13(3): 689-705.
Pabjańczyk-Wlazło EK, Puszkarz AK, Bednarowicz A, Tarzyńska N, Sztajnowski S. The Influence of Surface Modification with Biopolymers on the Structure of Melt-Blown and Spun-Bonded Poly(lactic acid) Nonwovens. Materials. 2022; 15(20): 7097-116.
Zhu M, Han J, Wang F, Shawo W, Xiong R, Zhang Q, et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mat. Eng. 2017; 302 (1): 1600353.
Shiu B-C, Zhang Y, Yuan Q, Lin J-H, Lou C-W, Li, Y. Preparation of Ag@ZIF-8@ PP Melt-Blown Nonwoven Fabrics: Air Filter Efficacy and Antibacterial Effect. Polymers. 2021; 13: 3773-86.
Kamble Z, Behera BK. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater. 2021; 284: 122800.
Tęsiorowski Ł, Frydrysiak M, Zięba J. Wireless transmission of breath rhythm in textronic system. 7th International Conference-TEXSCI, Liberec, Czech Republic; 2010.
Angelucci A, Cavicchioli M, Cintorrino IA, Cintorrino IA, Lauricella G, Rossi C, et al. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. Sensors. 2021; 21: 814-836.