Have a personal or library account? Click to login
Extracellular activity of proteases from Yarrowia lipolytica IPS21 as a function of the carbon and nitrogen source Cover

Extracellular activity of proteases from Yarrowia lipolytica IPS21 as a function of the carbon and nitrogen source

Open Access
|Dec 2023

References

  1. Gonçalves F.A.G.,Colen G., Takahashi J. A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. The Scientific World Journal. 2014; 476207. DOI: 10.1155/2014/476207
  2. Pokora M., Niedbalska J., Szoltysik M. Effect of Yarrowia lipolytica Enzymes on Selected Qualitative Features of Ripening, Low-Fat Cheeses. Żywność. Nauka. Technologia. Jakość. 2010;5:146-158. (In Polish)
  3. Madzak C., Gaillardin C., Beckerich J.M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology. 2004;109:63-81. DOI: 10.1016/j.jbiotec.2003.10.027
  4. Wieczorek D,. Slubik A., Maslowska-Lipowicz I., Gendaszewska D., Ławińska K. Collagen and Keratin as a Components of Hydrogels. Fibres and Textiles in Eastern Europen, 2022;151:61-69. DOI: 10.2478/ftee-2022-0024
  5. Gendaszewska D., Wieczorek D. Tannery waste as secondary raw materials. Janiszewska M (red). Environmental protection - new solutions and prospects for the future. Wydawnictwo Naukowe TYGIEL. 2022; 18-37. (In Polish)
  6. Moujehed E., Zarai Z., Khemir H., Miled N., Bchir M.S. Cleaner degreasing of sheepskins by the Yarrowia lipolytica LIP2 lipase as a chemical-free alternative in leather industry. Colloids and Surfaces B: Biointerfaces, 2022;211:112292. DOI:10.1016/j.colsurfb.2021.112292ff
  7. Speight R.E., Navone L., Gebbie L.K., Blinco J., Bryden W.L. Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. Animal Production Science. 2022;62:1113-1128. DOI:10.1071/AN21342
  8. Madhu A., Chakraborty J.N. Developments in application of enzymes for textile processing. Journal of Cleaner Production. 2017;145:114-133. DOI: 10.1016/j.jclepro.2017.01.013
  9. Jach M.E., Malm A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules. 2022;27:2300. DOI: 10.3390/molecules27072300
  10. Ibrahim N.A., Amin H.A., Abdel-Aziz M.S., Basma M.E. A green approach for modification and functionalization of wool fabric using bio-and nanotechnologies. Clean Technologies Environmental Policy. 2022;24:3287-3302. DOI: 10.1007/s10098-022-02385-z
  11. Czajgucka A., Chrzanowska J., Juszczyk P., Szoltysik M., Polomska X., Wojtatowicz M. Yeast growth in model cheese and their effect on protein and fat degradation. Acta Scientiarum Polonorum Biotechnologia. 2006; 5: 95-103.
  12. Cui W., Wang Q., Zhang F., Zhang S.C., Chi Z.M., Madzak C. Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. Process Biochemistry. 2011;46: 1442-1448. DOI: 10.1016/j.procbio.2011.03.017
  13. Bessadok B., Masari M., Brück T., Sadok S. Characterization of the Crude Alkaline Extracellular Protease of Yarrowia lipolytica YlTun15. Journal of FisheriesSciences.com. 2017; 11:019024.
  14. Ogrydziak D.M. Yeast Extracellular Proteases. Critical Review in Biotechnology. 1993;13:1-55. DOI: 10.3109/07388559309069197
  15. Hapeta P., Kerkhoven E.J., Lazar Z. Nitrogen as the major factor influencing gene expression in Yarrowia lipolytica. Biotechnology Reports. 2020;27:1-10. DOI: 10.1016/j.btre.2020.e00521
  16. Barth G., Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews. 1997;19:219-237.
  17. Timoumi A., Guillouet S.E., Molina-Jouve C., Fillaudeau L., Gorret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Applied Microbiology and Biotechnology. 2018;102:3831-3848. DOI: 10.1007/s00253-018-8870-3
  18. Walker J.M. The Lowry Method for Protein Quantitation. The Protein Protocols Handbook. 2009. Humana Press Inc, New Jersey.
  19. Aissaoui N., Marzouki M.N., Abidi F. Purification and biochemical characterization of a novel intestinal protease from Scorpaena notata. International Journal of Food Properties. 2017;20:2151-2165. DOI: 10.1080/10942912.2017.1368550
  20. Miksch K. The Influence of the TTC concentration on the determination of activated sludge activity. Acta Hydrochimica et Hydrobiologica. 1985;13:67-73. DOI:10.1002/aheh.19850130109
  21. Engel B., Suppan J., Nürnberger S., Power A.M., Marchetti-Deschmann M. Revisiting amino acid analyses for bioadhesives including a direct comparison of tick attachment cement (Dermacentor marginatus) and barnacle cement (Lepas anatifera). International Journal of Adhesion and Adhesives. 2021;105 1-9. DOI: 10.1016/j.ijadhadh.2020.102798
  22. Workman M., Holt P., Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express. 2013;3:58. DOI 10.1186/2191-0855-3-58
  23. Lubuta P., Workman M., Kerkhoven E.J., Workman C.T. Investigating the Influence of Glycerol on the Utilization of Glucose in Yarrowia lipolytica Using RNA-Seq-Based Transcriptomics. G3 (Bethesda). 2019; 9(12):4059-4071. DOI: 10.1534/g3.119.400469
  24. Rýglová S., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromolecular Materials and Engineering. 2017;302:1600460. DOI: 10.1002/mame.201600460
  25. Sari Y.W., Syafitri U., Sanders J.P.M., Bruins M.E. How biomass composition determines protein extractability. Industrial Crops and Products. 2015;70:125-133. DOI: 10.1016/j.indcrop.2015.03.020
  26. Li C., Lin W., Ong K.L., Mou J., Lin C.S.K., Fickers. P. Synthesis of Polyols and Organic Acids by Wild-Type and Metabolically Engineered Yarrowia lipolytica Strains. In: Darvishi Harzevili. F. (eds) Synthetic Biology of Yeasts. Springer. Cham. 2022. DOI: 10.1007/978-3-030-89680-5_9
  27. Papanikolaou S., Diamantopoulou P., Blanchard F., Lambrinea E., Chevalot I., Stoforos N.G., Rondags E. Physiological Characterization of a Novel Wild-Type Yarrowia lipolytica Strain Grown on Glycerol: Effects of Cultivation Conditions and Mode on Polyols and Citric Acid Production. Applied Sciences. 2020;10:1-24. DOI:10.3390/app10207373
  28. Akpinar O., Uçar F., Yalçin H.T. Screening and regulation of alkaline extracellular protease and ribonuclease production of Yarrowia lipolytica strains isolated and identified from different cheeses in Turkey. Ann Microbiol. 2011; 61:907-915. DOI: 10.1007/s13213-011-0213-x
  29. Ogrydziak D.M. Regulation of Production of Yarrowia lipolytica Extracellular Ribonuclease and Alkaline Extracellular Protease. In: Wolf. K.. Breunig. K.. Barth. G. (eds) Non-Conventional Yeasts in Genetics. Biochemistry and Biotechnology. Springer Lab Manuals. Springer. Berlin. Heidelberg. 2003. DOI: 10.1007/978-3-642-55758-3_64
  30. Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. Journal of Biotechnology. 2018;265:76-85. DOI: 10.1016/j.jbiotec.2017.11.007
  31. López-Flores A.R., Luna-Urban C., Buenrostro Figueroa. J.J., Hernández Martínez R., Huerta Ochoa S., Escalona-Buendía H., Aguilar-Gonzalez C., Prado-Barragan L.A. Effect of pH, temperature and protein and carbohydrates source in protease production by Yarrowia lipolytica in solid culture. Revista mexicana de ingeniería química. 2016;15:57-67.
  32. Coelho M.A.Z., Amaral P.F.F., Belo I. Yarrowia lipolytica: an industrial workhorse. Current research, technology and education topics in applied microbiology and microbial biotechnology. 2010;2:930-944.
  33. Heres A., Saldaña C., Toldrá F., Mora L. Identification of dipeptides by MALDI-ToF mass spectrometry in long-processing Spanish dry-cured ham. Food Chemistry: Molecular Sciences. 2021;3:100048. DOI: 10.1016/j.fochms.2021.100048
  34. da Silva R.R. Enzymatic Synthesis of Protein Hydrolysates From Animal Proteins: Exploring Microbial Peptidases. Frontiers in Microbiology. 2018; 9. DOI: 10.3389/fmicb.2018.00735
  35. Zephyr J., Kurt Yilmaz N., Schiffer C.A. Viral proteases: Structure, mechanism and inhibition. Enzymes. 2021;50:301-333. DOI: 10.1016/bs.enz.2021.09.004
  36. Juszczyk P., Rymowicz W., Kita A., Rywińska A. Biomass production by Yarrowia lipolytica yeast using waste derived from the production of ethyl esters of polyunsaturated fatty acids of flaxseed oil. Industrial Crops and Products. 2019;138. DOI: 10.1016/j.indcrop.2019.111590
  37. Bhateria R., Dhaka R. Biological strategies for detoxification of Hexavalent chromium. International Journal of Pharma and Bio Sciences. 2017;8:35-48. DOI:10.22376/ijpbs.2017.8.1.b35-48
  38. Dhar R., Sägesser R., Weikert Ch., Wagner A. Yeast Adapts to a Changing Stressful Environment by Evolving Cross-Protection and Anticipatory Gene Regulation. Molecular Biology and Evolution. 2013;30: 573-588. DOI:10.1093/molbev/mss253
  39. Xing D., Magdouli S., Zhang J., Bouafif H., Koubaa A. A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress. Journal of Fungi. 2023;9: 469. DOI: 10.3390/jof9040469
  40. Bankar A., Zinjarde S., Shinde M., Gopalghare G., Ravikumar A. Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles. 2018;22:617-628. DOI: 10.1007/s00792-018-1022-y
  41. Mendes M., Cassoni A.C., Alves S., Pintado M.E., Castro P.M.L., Moreira P. Screening for a more sustainable solution for decolorization of dyes and textile effluents using Candida and Yarrowia spp. Journal of Environmental Management. 2022;307:114421. DOI: 10.1016/j.jenvman.2021.114421
  42. Mupa M., Kubara R., Gere J.. Extraction, growth and immobilization of Yarrowia lipolytica yeast cells for dye effluent treatment. Archives of Environmental Protection. 2018;1:48-54. DOI: 10.24425/118180
  43. Mitra G.N. Definitions of Heavy Metals. Essential and Beneficial Plant Nutrients. In: Regulation of Nutrient Uptake by Plants. Springer. New Delhi. 2015. DOI: 10.1007/978-81-322-2334-4_8
  44. Chambard M., Albert B., Cadiou M., Auby S., Profizi C., Boulogne I. Living yeast-based biostimulants: different genes for the same results? Frontiers in Plant Science. 2023;14:1-10. DOI: 10.3389/ fpls.2023.1171564
  45. Prajapati C.D., Smith E., Kane F., Shen J. Selective enzymatic modification of wool/polyester blended fabrics for surface patterning. Journal of Cleaner Production. 2019;211:909-921. DOI: 10.1016/j.jclepro.2018.11.079
DOI: https://doi.org/10.2478/ftee-2023-0046 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 66 - 74
Published on: Dec 1, 2023
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Dorota Wieczorek, Katarzyna Miśkiewicz, Dorota Gendaszewska, Paulina Pipiak, Magdalena Lasoń-Rydel, Katarzyna Sieczyńska, Katarzyna Ławińska, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.