References
- Jing Y, Liu D, Kislyuk D, Zhai A, Xu J, Donahue J, Tavel S. Visual search at Pinterest, In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15. Association for Computing Machinery, New York, NY, USA, 2015; pp. 1889–1898.
- Gao Z, Han L. Clothing image classification based on random erasing and residual network. Journal of Physics: Conference Series 2020; Vol. 1634 No. 1, pp. 012136.
- Feng Y, Du C, Hua A, Jiang M, Wei X, Peng T, Hu X. EnCaps: Clothing Image Classification Based on Enhanced Capsule Network. Applied Sciences 2021; Vol. 11 No. 22, pp.11024.
- Kiapour MH, Han X, Lazebnik S, Berg AC, Berg TL. Where to buy it: Matching street clothing photos in online shops, in: IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile 2015; pp. 3343–3351.
- Liu KH, Chen TY, Chen CS. MVC: A Dataset for View-Invariant Clothing Retrieval and Attribute Prediction, in: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (ICMR ‘16), Association for Computing Machinery, New York, NY, USA 2016; pp. 313–316.
- Deng LL. Pre-detection Technology of Clothing Image Segmentation Based on GrabCut Algorithm. Wireless Pers Commun 2018; Vol. 102 No. 2, pp. 599–610.
- Yue X, Zhang C, Fujita H, Lv Y. Clothing fashion style recognition with design issue graph. Appl Intell 2020 ; Vol 51 No. 10, pp. 1–13.
- Li Y, He Z, Wang S, Huang W. Multideep Feature Fusion Algorithm for Clothing Style Recognition. Wirel Commun Mob Com 2021; Vol. 2021 No. 4, pp. 1–14.
- Kashilani D, Damahe LB, Thakur NV. An Overview of Image Recognition and Retrieval of Clothing items, in: IEEE International Conference on Research in Intelligent and Computing in Engineering (RICE), IEEE, San Salvador, El Salvador 2018; pp. 1–6.
- Donati L, Iotti E, Mordonini G, Prati A. Fashion Product Classification through Deep Learning and Computer Vision. Applied Sciences, 2019; Vol. 9 No. 7, pp. 1385.
- Stricker M, Orengo M. Storage and Retrieval for Image and Video Databases III. SPIE International Society for Optics and Photonics 1995; Vol. 1995, pp. 381–392.
- Hu MK. Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on 1962; Vol. 8 No. 2, pp. 179–187.
- Li Y, Xu S, Luo X, Lin S. A new algorithm for product image search based on salient edge characterization. Journal of the Association for Information Science & Technology 2014 ; Vol. 65 No. 12, pp. 2534–2551.
- Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 2004; Vol. 60 No. 2, pp. 91–110.
- Li KL, Liu ZD. Clothing Information System Design Based on Images Retrieval, in: International Conference on Advanced Educational Technology and Information Engineering (AETIE 2015), Computer Information Centre, Beijing Institute of Fashion Technology 2015; Vol. 2015, pp. 677–683.
- Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection, in: IEEE Computer Society Conference on Computer Vision & Pattern Recognition (CVPR'05), IEEE, San Diego, CA, USA 2005; pp. 886–893.
- Thewsuwan S, Horio K. Preprocessing Techniques Based on LBP and Gabor Filters for Clothing Classification, in: 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), IEEE, Phuket, Thailand, Vol. 2016, pp. 1–6.
- Sha D, Wang D, Zhou X, F Shi, Ge Y. An Approach for Clothing Recommendation Based on Multiple Image Attributes, in: Cui, B., Zhang, N., Xu, J., Lian, X., & Liu, D. (Eds.), International Conference on Web-Age Information Management, Springer, Cham 2016; pp. 272–285.
- Surakarin W, Chongstitvatana P. Predicting Types of Clothing Using SURF and LDP based on Bag of Features, in: 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE, Hua Hin, Thailand 2015; pp. 1–5.
- Li JQ, Shi WM, Yang DH. Clothing Image Classification with a Dragonfly Algorithm Optimised Online Sequential Extreme Learning Machine. Fibres Text East Eur 2021 ; Vol. 29 No. 3, pp. 90–95.
- Tabik S, Peralta D, Herrera-Poyatos A, Herrera F. A snapshot of image preprocessing for convolutional neural networks: case study of MNIST. International Journal of Computational Intelligence Systems 2017 ; Vol. 10 No. 1, pp. 555.
- Bui HM, Lech M, Cheng E, Neville K, Burnett IS. Object Recognition Using Deep Convolutional Features Transformed by a Recursive Network Structure. IEEE Access 2016 ; Vol. 4, pp. 10059–10066.
- Tang P, Wang H, Kwong S. G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing. Neurocomputing 2017 ; Vol. 225 FEB.15, pp. 188–197.
- Ghazi MM, Yanikoglu B, Aptoula E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017 ; Vol. 235 APR.26, pp. 228–235.
- Han K, Wang Y, Tian Q, Guo J, Xu C. GhostNet: More Features From Cheap Operations, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Seattle, WA, USA 2020 ; pp. 1577–1586.
- Lao B, Jagadeesh K. Convolutional Neural Networks for Fashion Classification and Object Detection. 2015.
- Dong C, Shi Y, Tao R. Convolutional Neural Networks for Clothing Image Style Recognition. in: Proceedings of 2018 International Conference on Computational, Modeling, Simulation and Mathematical Statistics (CMSMS), Xi'an, China 2018, pp. 608–613.
- Xiang J, Dong T, Pan R,, Gao W. Clothing Attribute Recognition Based on RCNN Framework Using L-Softmax Loss. IEEE Access 2020 ; Vol. 8, pp. 48299–48313.
- Di W. A comparative research on clothing images classification based on neural network models, in: IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), IEEE, Weihai, China 2020; pp. 495–499.
- Bossard L, Dantone M, Leistner C, Wengert C, Quack T, Gool LV. Apparel Classification with Style, in: Lee, K.M., Matsushita, Y., Rehg, J. M., Hu, Z.Y. (Ed.s), Asian conference on computer vision (ACCV), Springer-Verlag, Berlin, Heidelberg 2012; pp. 321–335.
- Huo P, Wang Y, Liu Q. A part-based and feature fusion method for clothing classification, in: Pacific Rim Conference on Multimedia, Springer, Xi'an 2016; pp. 231–241.
- Liu S, Feng J, Domokos C, Xu H, Huang J, Hu Z, Yan S. Fashion Parsing with Weak Colour-category Labels. IEEE Transactions on Multimedia 2014; Vol. 16 No. 1, pp. 253–265.
- Liu Z, Luo P, Qiu S, Wang X, Tang X. DeepFashion: Powering ro-bust clothes recognition and retrieval with rich annotations, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA 2016; pp. 1096–1104.
- Wang J, Yang Y, Mao J, Huang Z, Huang C, Xu W. CNN-RNN: A unified framework for multi-label image classification, in: IEEE conference on computer vision and pattern recognition (CVPR), IEEE, Las Vegas, NV, USA 2016; pp. 2285–2294.
- Nawaz M, Hasan R, Hasan MA, Hassan M, Rahman RM. Automatic Categorization of Traditional Clothing Using Convolutional Neural Network, in: IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), IEEE, Singapore 2018; pp. 98–103.
- Cychnerski J, Brzeski A, Boguszewski A, Marmolowski M, Trojanowicz M. Clothes detection and classification using convolutional neural networks, in: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, Limassol, Cyprus 2017; pp. 1–8.
- Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. Under Review as a Conference Paper at ICLR. 2016.
- Zhang X, Song C, Yang Y, Zhang Z, Zou Q. Deep learning based human body segmentation for clothing fashion classification”, in: Chinese Automation Congress (CAC), Shanghai, China 2020; Vol. 2020 Nov. 6–8, pp. 7544–7549.
- Rohrmanstorfer S, Komarov M, Modritscher F. Image Classification for the Automatic Feature Extraction in Human Worn Fashion Data. Mathematics 2021 ; Vol. 9 No. 6, pp. 624.
- Hodecker A, Fernandes A, Steffens A, Crocker P, Leithardt V. Clothing Classification Using Convolutional Neural Networks, in: 15th IEEE Iberian Conference on Information Systems and Technologies (CISTI), IEEE, Seville, Spain 2020; pp. 1–6.
- Basavanhally AN, Ganesan S, Agner S, Monaco JP, Feldman MD, Tomaszewski JE, Bhanot G, Madabhushi, A. Computerized image-based detection and grading of lymphocytic infiltration in HER2-breast cancer histopathology. IEEE Transactions on Biomedical Engineering 2010; Vol. 57 No. 3, pp. 642–653.
- Adrian R. Multi-label classification with Keras, available at: https://www.pyimagesearch.com/2018/05/07/multi-label-classification-with-keras/ (accessed 7 May 2018)
- Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Science 2014; pp. 1–14.
- Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms”. 2017.
- Simo-Serra E, Ishikawa H. Fashion Style in 128 Floats: Joint Ranking and Classification Using Weak Data for Feature Extraction, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA 2016; pp. 298–307.
- Wang L, Guo S, Huang W, Xiong Y, Qiao Y. Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs, in: IEEE Transactions on Image Processing, IEEE 2017; Vol. 26 No. 4, pp. 2055–2068.