References
- DeVoy JE, Congiusta E, Lundberg DJ, Findeisen S, Bhattacharya S (2021) Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Manage 136: 303–309. https://doi.org/10.1016/j.wasman.2021.10.009
- Horvat KP, Wendramin KŠ (2021) Issues Surrounding Behavior toward Discarded Textiles and Garments in Ljubljana. Sustainability 13(11):6491. https://doi.org/10.3390/su13116491
- Jäämaa L, Kaipia R (2022) The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Manage 141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012
- U.S. EPA (2018) Textiles: Material-Specific Data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data Accessed 10 January 2022.
- Wang Y (2010) Fibers and Textile Waste Utilization. Waste Biomass Valori 1:135–143. https://doi.org/10.1007/s12649-009-9005-y
- Zhao Y, Chen W, Liu F, Zhao P (2022) Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance. Fuel 316:123327. https://doi.org/10.1016/j.fuel.2022.123327
- Sadrolodabaee P, Claramunt J, Ardanuy M, de la Fuenteal A (2021) Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Stud Constr Mater 14:e00492. https://doi.org/10.1016/j.cscm.2021.e00492
- Dissanayake DGK, Weerasinghe DU, Wijesinghe KAP, Kalpage KMDMP (2018) Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manage 79:356–361. https://doi.org/10.1016/j.wasman.2018.08.001
- Jamshaid H, Hussain U, Mishra R, Tichy M, Muller M (2021) Turning textile waste into valuable yarn. Clean Eng Technol 5: 100341. https://doi.org/10.1016/j.clet.2021.100341
- Lopatina A, Anugwom I, Blot H, Conde ÁS, Mänttäri M, Kallioinen M (2021) Re-use of waste cotton textile as an ultrafiltration membrane. J Environ Chem Eng 9(4): 105705. https://doi.org/10.1016/j.jece.2021.105705
- Rahman SS, Siddiqua S, Cherian C (2022) Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Clean Eng Technol 6:100420. https://doi.org/10.1016/j.clet.2022.100420
- Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015). Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer. Waste Biomass Valori 6:891–897. https://doi.org/10.1007/s12649-015-9393-0
- Boussine S, Ouakarrouch M, Bybi A, Laaroussi N, Garoum M, Tilioua A (2022) Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl Acoust 187: 108520. https://doi.org/10.1016/j.apacoust.2021.108520
- Fiore V, Di Bella G, Valenza A (2020) Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J Nat Fibers 17(10):1532–1543. https://doi.org/10.1080/15440478.2019.1584075
- Denes O, Florea I, Manea DL (2019) Utilization of Sheep Wool as a Building Material. Procedia Manuf 32: 236–241. https://doi.org/10.1016/j.promfg.2019.02.208
- Kamble Z, Behera BK (2021) Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater 284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800
- Valverde IC, Castilla LH, Nuñez DF, Rodriguez-Senín E, de la Mano Ferreira R (2013) Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valori 4:139–146. https://doi.org/10.1007/s12649-012-9124-8
- Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161–169. https://doi.org/10.1016/j.enbuild.2015.01.056
- Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F (2021) Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J Build Engin 35:102060. https://doi.org/10.1016/j.jobe.2020.102060
- Akter MMdK, Haq UN, Islamb MdM, Uddin MA (2022) Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean Environ Syst 4:100070. https://doi.org/10.1016/j.cesys.2022.100070
- Stapulionienė R (2016) Development and investigation of thermal insulating composite from fibrous plants [Termoizoliacinio kompozito iš pluoštinių augalų kūrimas ir tyrimai]. PhD Dissertation. Vilnius: Technika
- Stapulionienė R, Vaitkus S, Vėjelis S, Sankauskaitė A (2016) Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int J Precis Eng Man 17:1371–1381. https://doi.org/10.1007/s12541-016-0163-0
- ISO 1833-1:2006. Textiles — Quantitative chemical analysis — Part 1: General principles of testing. ISO
- ISO 1833-4:2017. Textiles — Quantitative chemical analysis — Part 4: Mixtures of certain protein fibres with certain other fibres (method using hypochlorite). ISO
- ISO 1833-7:2017. Textiles — Quantitative chemical analysis — Part 7: Mixtures of polyamide with certain other fibres (method using formic acid). ISO
- ISO 1833-11:2017. Textiles — Quantitative chemical analysis — Part 11: Mixtures of certain cellulose fibres with certain other fibres (method using sulfuric acid). ISO
- EN 12667:2001. Thermal performance of building materials and products, Determination of thermal resistance by means of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance. CEN
- ISO 8301:1991. Thermal insulation, Determination of steady-state thermal resistance and related properties, Heat flow meter aparatus. CEN
- Data Science Textbook (2020). https://docs.tibco.com/data-science/textbook. Accessed 19 January 2021
- Chatterjee S, Simonoff SJ (2013) Handbook of Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey
- Zach, J., Korjenic, A., Petranek, V., Hroudova, J., Bednar, T.. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. (2012). https://doi.org/10.1016/j.enbuild.2012.02.014
- Ye, Z., Wells, C.M., Carrington, C.G., Hewitt, N.J.. Thermal conductivity of wool and wool–hemp insulation. International J. Energy Res. (2006). https://doi.org/10.1002/er.1123
- Zach J, Hroudova J, Brožovsky J, Krejza Z, Gailius A (2013) Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Eng 57:1288–1294. https://doi.org/10.1016/j.proeng.2013.04.162
- Dieckmann E, Onsiong R, Nagy B, Sheldrick L, Cheeseman C (2021) Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valori 12:1119–1131. https://doi.org/10.1007/s12649-020-01007-3
- Asdrubali F, D‘Alessandro F, Schiavoni SA (2015) Review of unconventional sustainable building insulation materials. Sustainable Mat Technol 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002
- Bosia D, Savio L, Thiebat F, Patrucco A, Fantucci S, Piccablotto G, Marino D (2015) Sheep Wool for Sustainable Architecture. Energ Proc 78: 315–320. https://doi.org/10.1016/j.egypro.2015.11.650
- Plowman JE, Harland DP, Scobie DR, O’Connell D, Thomas A, Brorens PH, Richena M, Meenken E, Phillips AJ, Vernon J A, Clerens S (2019) Differences between ultrastructure and protein composition in straight hair fibres. Zoology 133: 40–53. https://doi.org/10.1016/j.zool.2019.01.002
- Kancheva M, Toncheva A, Manolova N, Rashkov I (2015) Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment. EXPRESS Polym Lett 9(1):49–65. http://dx.doi.org/10.3144/expresspolymlett.2015.6