Have a personal or library account? Click to login
Textile Waste from Woollen Yarn Production as Raw Materials for Thermal Insulation Products Cover

Textile Waste from Woollen Yarn Production as Raw Materials for Thermal Insulation Products

Open Access
|Dec 2022

References

  1. DeVoy JE, Congiusta E, Lundberg DJ, Findeisen S, Bhattacharya S (2021) Post-Consumer textile waste and disposal: Differences by socioeconomic, demographic, and retail factors. Waste Manage 136: 303–309. https://doi.org/10.1016/j.wasman.2021.10.009
  2. Horvat KP, Wendramin KŠ (2021) Issues Surrounding Behavior toward Discarded Textiles and Garments in Ljubljana. Sustainability 13(11):6491. https://doi.org/10.3390/su13116491
  3. Jäämaa L, Kaipia R (2022) The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Manage 141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012
  4. U.S. EPA (2018) Textiles: Material-Specific Data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data Accessed 10 January 2022.
  5. Wang Y (2010) Fibers and Textile Waste Utilization. Waste Biomass Valori 1:135–143. https://doi.org/10.1007/s12649-009-9005-y
  6. Zhao Y, Chen W, Liu F, Zhao P (2022) Hydrothermal pretreatment of cotton textile wastes: Biofuel characteristics and biochar electrocatalytic performance. Fuel 316:123327. https://doi.org/10.1016/j.fuel.2022.123327
  7. Sadrolodabaee P, Claramunt J, Ardanuy M, de la Fuenteal A (2021) Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Stud Constr Mater 14:e00492. https://doi.org/10.1016/j.cscm.2021.e00492
  8. Dissanayake DGK, Weerasinghe DU, Wijesinghe KAP, Kalpage KMDMP (2018) Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Manage 79:356–361. https://doi.org/10.1016/j.wasman.2018.08.001
  9. Jamshaid H, Hussain U, Mishra R, Tichy M, Muller M (2021) Turning textile waste into valuable yarn. Clean Eng Technol 5: 100341. https://doi.org/10.1016/j.clet.2021.100341
  10. Lopatina A, Anugwom I, Blot H, Conde ÁS, Mänttäri M, Kallioinen M (2021) Re-use of waste cotton textile as an ultrafiltration membrane. J Environ Chem Eng 9(4): 105705. https://doi.org/10.1016/j.jece.2021.105705
  11. Rahman SS, Siddiqua S, Cherian C (2022) Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Clean Eng Technol 6:100420. https://doi.org/10.1016/j.clet.2022.100420
  12. Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015). Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer. Waste Biomass Valori 6:891–897. https://doi.org/10.1007/s12649-015-9393-0
  13. Boussine S, Ouakarrouch M, Bybi A, Laaroussi N, Garoum M, Tilioua A (2022) Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl Acoust 187: 108520. https://doi.org/10.1016/j.apacoust.2021.108520
  14. Fiore V, Di Bella G, Valenza A (2020) Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. J Nat Fibers 17(10):1532–1543. https://doi.org/10.1080/15440478.2019.1584075
  15. Denes O, Florea I, Manea DL (2019) Utilization of Sheep Wool as a Building Material. Procedia Manuf 32: 236–241. https://doi.org/10.1016/j.promfg.2019.02.208
  16. Kamble Z, Behera BK (2021) Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr Build Mater 284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800
  17. Valverde IC, Castilla LH, Nuñez DF, Rodriguez-Senín E, de la Mano Ferreira R (2013) Development of New Insulation Panels Based on Textile Recycled Fibers. Waste Biomass Valori 4:139–146. https://doi.org/10.1007/s12649-012-9124-8
  18. Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandjiwala RD (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161–169. https://doi.org/10.1016/j.enbuild.2015.01.056
  19. Ghermezgoli ZM, Moezzi M, Yekrang J, Rafat SA, Soltani P, Barez F (2021) Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J Build Engin 35:102060. https://doi.org/10.1016/j.jobe.2020.102060
  20. Akter MMdK, Haq UN, Islamb MdM, Uddin MA (2022) Textile-apparel manufacturing and material waste management in the circular economy: A conceptual model to achieve sustainable development goal (SDG) 12 for Bangladesh. Clean Environ Syst 4:100070. https://doi.org/10.1016/j.cesys.2022.100070
  21. Stapulionienė R (2016) Development and investigation of thermal insulating composite from fibrous plants [Termoizoliacinio kompozito iš pluoštinių augalų kūrimas ir tyrimai]. PhD Dissertation. Vilnius: Technika
  22. Stapulionienė R, Vaitkus S, Vėjelis S, Sankauskaitė A (2016) Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int J Precis Eng Man 17:1371–1381. https://doi.org/10.1007/s12541-016-0163-0
  23. ISO 1833-1:2006. Textiles — Quantitative chemical analysis — Part 1: General principles of testing. ISO
  24. ISO 1833-4:2017. Textiles — Quantitative chemical analysis — Part 4: Mixtures of certain protein fibres with certain other fibres (method using hypochlorite). ISO
  25. ISO 1833-7:2017. Textiles — Quantitative chemical analysis — Part 7: Mixtures of polyamide with certain other fibres (method using formic acid). ISO
  26. ISO 1833-11:2017. Textiles — Quantitative chemical analysis — Part 11: Mixtures of certain cellulose fibres with certain other fibres (method using sulfuric acid). ISO
  27. EN 12667:2001. Thermal performance of building materials and products, Determination of thermal resistance by means of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance. CEN
  28. ISO 8301:1991. Thermal insulation, Determination of steady-state thermal resistance and related properties, Heat flow meter aparatus. CEN
  29. Data Science Textbook (2020). https://docs.tibco.com/data-science/textbook. Accessed 19 January 2021
  30. Chatterjee S, Simonoff SJ (2013) Handbook of Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey
  31. Zach, J., Korjenic, A., Petranek, V., Hroudova, J., Bednar, T.. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. (2012). https://doi.org/10.1016/j.enbuild.2012.02.014
  32. Ye, Z., Wells, C.M., Carrington, C.G., Hewitt, N.J.. Thermal conductivity of wool and wool–hemp insulation. International J. Energy Res. (2006). https://doi.org/10.1002/er.1123
  33. Zach J, Hroudova J, Brožovsky J, Krejza Z, Gailius A (2013) Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Eng 57:1288–1294. https://doi.org/10.1016/j.proeng.2013.04.162
  34. Dieckmann E, Onsiong R, Nagy B, Sheldrick L, Cheeseman C (2021) Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valori 12:1119–1131. https://doi.org/10.1007/s12649-020-01007-3
  35. Asdrubali F, D‘Alessandro F, Schiavoni SA (2015) Review of unconventional sustainable building insulation materials. Sustainable Mat Technol 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002
  36. Bosia D, Savio L, Thiebat F, Patrucco A, Fantucci S, Piccablotto G, Marino D (2015) Sheep Wool for Sustainable Architecture. Energ Proc 78: 315–320. https://doi.org/10.1016/j.egypro.2015.11.650
  37. Plowman JE, Harland DP, Scobie DR, O’Connell D, Thomas A, Brorens PH, Richena M, Meenken E, Phillips AJ, Vernon J A, Clerens S (2019) Differences between ultrastructure and protein composition in straight hair fibres. Zoology 133: 40–53. https://doi.org/10.1016/j.zool.2019.01.002
  38. Kancheva M, Toncheva A, Manolova N, Rashkov I (2015) Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment. EXPRESS Polym Lett 9(1):49–65. http://dx.doi.org/10.3144/expresspolymlett.2015.6
DOI: https://doi.org/10.2478/ftee-2022-0039 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 8 - 16
Published on: Dec 22, 2022
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Sigitas Vėjelis, Saulius Vaitkus, Audronė Sankauskaitė, Arūnas Kremensas, Jurga Šeputytė Jucikė, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.