References
- Xiao H, Shi MW, Liu LL. The Crystallinity and Orientation Structure and Crimp Properties of PET/PTT Bicomponent Filament. Advanced Materials Research 2013; 627(1): 110–116.
- Chen SH, Wang SY. Effect of Thermal Stimuli on Physical Behaviors of PET/PTT Bicomponent Filament. Advanced Materials Research 2010; 129–131: 280–284.
- Yang ZL, Wang FM. Dyeing and finishing performance of different PTT/PET bi-component filament fabrics. Indian Journal of Fibre & Textile Research 2016; 41(4): 411–417.
- Chen SH, Wang SY. Tensile and Fracture Behaviors of PET/PTT Side-Side Bicomponent Filament. International Journal of Polymer Analysis and Characterization 2010; 15(3): 147–154.
- Fang Y, Wang CH, Liang HF, Bao LL et al. Theoretical and experimental study on the crimp mechanism of bi-component filament. Advanced Materials Research 2012; 476–478(0): 2209–2212.
- Oh TH. Effects of Spinning and Drawing Conditions on the Crimp Contraction of Side-by-Side Poly(trimethylene terephthalate) Bicomponent Fibers. Journal of Applied Polymer Science 2010; 102(2): 1322–1327.
- Oh TH. Melt Spinning and Drawing Process of PET Side-by-Side Bicomponent Fibers. Journal of Applied Polymer Science 2006; 101(3): 1362–1367.
- Lai K, Chen MY, Sun RJ et al. Study on the Crimp Property of PTT/PET Bicomponent Filament. Advanced Materials Research 2013; 781–784(0): 2680–2684.
- Rwei SP, Lin YT, Su YY. Study of Self-Crimp Polyester Fibers. Polymer Engineering and Science 2005; 45(6): 838–845.
- Dention MJ. The Crimp Curvature of Bicomponent Fibers. Journal of the Textile Institute 1982; 73(6): 253–263.
- Liu XS, Jiao SY, Wang FM. Configuring the spinning technology of PTT/PET bicomponent filaments according to fabric elasticity. Textile Research Journal 2013; 83(5): 487–498.
- Luo J, Xu GB, Wang FM. External Configuration and Crimp Parameters of PTT (Polytrimethylene terephthalate)/PET (Polyethylene terephthalate) Conjugated Fiber. Fibers and Polymers 2009; 10(4): 508–512.
- Chuah HH. Orientation and Structure Development in Poly(trimethylene terephthalate) Tensile Drawing. Macromolecules 2001; 34(20): 6985–6993.
- Guo J, Zheng N, Chen YT. Study on Influence of Crimping Performance of PET/PTT Self-Crimp Yarn Treated with Moist Heat. Advanced Materials Research 2011; 287–290(0): 2547–2551.
- Chen SH, Wang SY. Latent-Crimp Behavior of PET/PTT Elastomultiester and a Concise Interpretation. Journal of Macromolecular Science, Part B: Physics. 2011; 50(7): 1447–1459.
- Jiang ZH, Guo ZG, Zhang ZQ. Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Textil Research Journal 2018; 89(7): 1207–1214.
- Ayad E, Cayla AL, Rault F et al. Influence of Rheological and Thermal Properties of Polymers During Melt Spinning on Bicomponent Fiber Morphology. Journal of Materials Engineering and Performance 2016; 25(8): 3296–3302.
- Petraccone V, Rosa CD, Guerra G et al. On the Double Peak Shape of Melting Endotherms of Isothermally Crystallized Isotactic Polypropylene Samples. Die Makromolekulare Chemie Rapid Communications 1984; 5(10): 631.
- Wang Y, Sun YM, Zhu ZY et al. XRD Study of PET Irradiated by 1.158 GeV Fe Ions. IMP and GIRFL Annual Report 2002; (1): 63.
- Hu JC, Yang D, Chen P et al. Studies on The Crystallinity of PET by WAXD. Acta Polymerica Sinica 1990; (3): 283.
- Ren MQ, Zhang ZY, Wu SZ et al. Uniaxial Orientation and Crystallization Behavior of Amorphous Poly (ethylene terephthalate) Fibers. Journal of Polymer Research 2006; 13(1): 9–15.
- Mehdi Z, Mojtaba S. Isothermal Crystallization Kinetics of Poly(Ethylene Terephthalate)S of Different Molecular Weights. Journal of the Iranian Chemical Society 2013; 10(1): 77–84.
- Zhu PP, Ma DZ. Study on the Double Cold Crystallization Peaks of Poly (Ethylene Terephthalate) (PET): 2. Samples Isothermally Crystallized At High Temperature. European Polymer Journal 1999; 35(4): 739–742.
- Xiao H, Shi MW, Liu LL et al. The Structures and Properties of PET (Polyethylene Terephthalate)/PTT (Polytrimethylene Terephthalate) Self-Crimp Filament at Different Temperatures. Advanced Materials Research 2011; 332–334(0): 239–245.
- Wu AH, Xu GP, Luo GH et al. Study of the Mechanical Properties and Releasing Anion Capacity of Anionic Functional PET Fiber. Applied Mechanics and Material 2013; 423–426(0): 322–325.
- Zhang X, Tian XY, Yao XY et al. Isothermal and Non-Isothermal Shrinkage Behaviors of Highly Oriented PET Yarns. Fibers and Polymers 2008; 9(3): 360–364.
- Rim PB, Nelson CJ. Properties of PET Fibers with High Modulus and Low Shrinkage (HMLS). I. Yarn Properties and Morphology. Applied Polymer. Sci. 2010; 42(7): 1807–1813.