References
- Aho, K.A. 2014. Foundational and Applied Statistics for Biologists Using R. Boca Raton, FL, CRC Press. 618 pp.
- Burkhart, H.E., Parker, R.C., Strub, M.R., Oderwald, R.G. 1972. Yields of old-field loblolly pine plantations. – Publication FWS-3-72. Blacksburg, VA, Virginia Polytechnic Institute and State University, Division of Forestry and Wildlife Resources. 51 pp.
- Burkhart, H.E, Tomé, M. 2012. Modeling Forest Trees and Stands. Dordrecht, Springer. 457 pp.
- Çatal, Y., Carus, S. 2018. A height-diameter model for brutian pine (Pinus Brutia Ten.) plantations in southwestern Turkey. – Applied Ecology and Environmental Research, 16(2), 1445–1459.
- Chapman, D.G. 1961. Statistical problems in dynamics of exploited fisheries populations. – Neyman, J. (ed.). Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4. Berkeley, CA, University of California Press, 153–168.
- Cui, K., Wu, X., Zhang, C., Zhao, X., von Gadow, K. 2022. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China. – Forest Ecology and Management, 519, 120298. https://doi.org/10.1016/j.foreco.2022.120298.
- Curtis, R.O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. – Forest Science, 13(4), 365–375.
- Duan, G., Gao, Z., Wang, Q., Fu, L. 2018. Comparison of different height–diameter modelling techniques for prediction of site productivity in natural unevenaged pure stands. – Forests, 9(2), 63. https://doi.org/10.3390/f9020063.
- Hanus, M.L., Marshall, D.D., Hann, D.W. 1999. Height-diameter equations for six species in the coastal regions of the Pacific Northwest. – Research Contribution 25. Corvallis, Oregon, Oregon State University, Forest Research Laboratory. 11 pp.
- Hoßfeld, J.W. 1823. Forest taxation in its entirety in two volumes. (Forsttaxation nach ihrem ganzen Umfange in zwei Bänden). Hildburghausen, Kesselring 1823/24. 352 pp. (In German).
- Huang, S., Price, D., Titus, S.J. 2000. Development of ecoregion-based height–diameter models for white spruce in boreal forests. – Forest Ecology and Management, 129(1–3), 125–141. https://doi.org/10.1016/S0378-1127(99)00151-6.
- Huang, S., Titus, S.J., Wiens, D.P. 1992. Comparison of nonlinear height-diameter functions for major Alberta tree species. – Canadian Journal of Forest Research, 22(9), 1297–1304. https://doi.org/10.1139/x92-172.
- Kangur, A., Nigul, K., Padari, A., Kiviste, A., Korjus, H., Laarmann, D., Põldveer, E., Mitt, R., Frelich, L.E., Jõgiste, K., Stanturf, J.A., Paluots, T., Kängsepp, V., Jürgenson, H., Noe, S.M., Sims, A., Metslaid, M. 2021. Composition of live, dead and downed trees in Järvselja old-growth forest. – Forestry Studies / Metsanduslikud Uurimused, 75, 15–40.
- Kiviste, A., Álvarez Gonzáles, J.G., Rojo Alboreca, A., Ruiz González, A.D. 2002. Forest Growth Functions. (Funciones de crecimiento de aplicación en el ámbito forestal). Madrid, Monografías INIA: Forestal No. 4. 190 pp. (In Spanish).
- Kiviste, A., Hordo, M. 2002. Network of permanent forest growth plots in Estonia. (Eesti metsa kasvukäigu püsiproovitükkide võrgustik). – Forestry Studies / Metsanduslikud Uurimused, 37, 43–58. (In Estonian with English summary).
- Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38.
- Lam, T.Y., Ducey, M.J. 2024. Analysis of the inflection points of height-diameter models. – Forest Ecosystems, 11(4), 100202. https://doi.org/10.1016/j.fecs.2024.100202.
- Lebedev, A.V. 2020. New generalized height-diameter models for birch stands in European Russia. – Baltic Forestry, 26(2). https://doi.org/10.46490/BF499.
- Lei, Y., Parresol, B.R. 2001. Remarks on height-diameter modeling. – Research Note SRS-10. Asheville, North Carolina, U.S. Department of Agriculture, Forest Service, Southern Research Station. 5 pp.
- Mehtätalo, L. 2005. Height-diameter models for Scots pine and birch in Finland. – Silva Fennica, 39(1), 55–66. https://doi.org/10.14214/sf.395.
- Mehtätalo, L., de-Miguel, S., Gregoire, T.G. 2015. Modeling height-diameter curves for prediction. – Canadian Journal of Forest Research, 45(7), 826–837. https://doi.org/10.1139/cjfr-2015-0054.
- Mehtätalo, L., Lappi, J. 2020. Biometry for Forestry and Environmental Data with Examples in R. Boca Raton, FL, CRC Press. 411 pp.
- Meyer, H.A. 1940. A mathematical expression for height curves. – Journal of Forestry, 38(5), 415–420.
- Misik, T., Antal, K., Kárász, I., Tóthmérész, B. 2016. Nonlinear height–diameter models for three woody, understory species in a temperate oak forest in Hungary. – Canadian Journal of Forest Research, 46(11), 1337–1342. https://doi.org/10.1139/cjfr-2015-0511.
- Näslund, M. 1936. Forest research intitute’s thinning experiments in pine forests. (Skogsförsöksanstaltens gallringsförsök i tallskog). – Reports of the Swedish Institute of Experimental Forestry, (Meddelanden från Statens Skogsförsöksanstalt), 29, 1–169. (In Swedish with German summary).
- Nigul, K., Padari, A., Kiviste, A., Noe, S.M., Korjus, H., Laarmann, D., Frelich, L.E., Jõgiste, K., Stanturf, J.A., Paluots, T., Põldveer, E., Kängsepp, V., Jürgenson, H., Metslaid, M., Kangur, A. 2021. The possibility of using the Chapman–Richards and Näslund functions to model height–diameter relationships in hemiboreal old-growth forest in Estonia. – Forests, 12(2), 184. https://doi.org/10.3390/f12020184.
- Nilson, A. 2002a. Weight function for non-linear transformation of regression equations. (Teisenduskaalust regressioonivõrrandite lineariseerimisel). – Forestry Studies / Metsanduslikud Uurimused, 37, 89–112. (In Estonian with English summary).
- Nilson, A. 2002b. Some fragments of stand growth and structure models. (Fragmente puistu kasvu ja ehituse mudelitest). – Forestry Studies / Metsanduslikud Uurimused, 37, 9–20. (In Estonian with English summary).
- Padari, A. 1994. Principles of selecting height/diameter curves. (Kõrguse kõverate valiku põhimõtted). Teadustööde Kogumik, 173, 134–143. (In Estonian).
- Paulo, J.A., Tomé, J., Tomé, M. 2011. Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. – Annals of Forest Science, 68, 295–309. https://doi.org/10.1007/s13595-011-0041-y.
- R Core Team. 2025. R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. [WWW document]. – URL https://www.R-project.org/. [Accessed 10 January 2025].
- Richards, F.J. 1959. A flexible growth function for empirical use. – Journal of Experimental Botany, 10(2), 290–301.
- Rules of Forest Management. 2007. Metsa majandamise eeskiri. – Riigi Teataja, RTL 2007, 2, 16. (In Estonian).
- Seki, M., Sakici, O.E. 2022. Ecoregion-based height-diameter models for Crimean pine. – Journal of Forest Research, 27(1), 36–44.
- Sharma, M., Parton, J. 2007. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. – Forest Ecology and Management, 249(3), 187–198. https://doi.org/10.1016/j.foreco.2007.05.006.
- Sharma, R.P. 2010. Modelling height-diameter relationship for Chir pine trees. – Banko Janakari, 19(2), 3–9. https://doi.org/10.3126/banko.v19i2.2978.
- Sims, A. 2022. Principles of National Forest Inventory Methods: Theory, Practice, and Examples from Estonia. Cham, Springer. 162 pp.
- Soares, P., Tomé, M. 2002. Height–diameter equation for first rotation eucalypt plantations in Portugal. – Forest Ecology and Management, 166(1–3), 99–109. https://doi.org/10.1016/S0378-1127(01)00674-0.
- Sonmez, T. 2009. Generalized height-diameter models for Picea orientalis L. – Journal of Environmental Biology, 30(5), 767–772.
- Tarmu, T., Laarmann, D., Kiviste, A. 2020. Mean height or dominant height – what to prefer for modelling the site index of Estonian forests? – Forestry Studies / Metsanduslikud Uurimused, 72, 121–138.
- Temesgen, H., Hann, D.W., Monleon, V.J. 2007. Regional height–diameter equations for major tree species of southwest Oregon. – Western Journal of Applied Forestry, 22(3), 213–219. https://doi.org/10.1093/wjaf/22.3.213.
- Temesgen, H., v. Gadow, K. 2004. Generalized height–diameter models – an application for major tree species in complex stands of interior British Columbia. – European Journal of Forest Research, 123, 45–51.
- van Laar, A., Akça, A. 2007. Forest Mensuration. Dordrecht, Springer. 385 pp.
- Vargas-Larreta, B., Castedo-Dorado, F., Álvarez-González, J.G., Barrio-Anta, M., Cruz-Cobos, F. 2009. A generalized height–diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). – Forestry: An International Journal of Forest Research, 82(4), 445–462. https://doi.org/10.1093/forestry/cpp016.
- Woollons, R.C. 2003. Examination of mean top height definitions and height estimation equations for Pinus radiata in New Zealand. – New Zealand Journal of Forestry, 48(3), 15–18.
- Wykoff, W.R., Crookston, N.L., Stage, A.R. 1982. User’s guide to the stand prognosis model. – General Technical Report INT-133. Ogden, UT, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 112 pp.