Burkhart, H.E., Parker, R.C., Strub, M.R., Oderwald, R.G. 1972. Yields of old-field loblolly pine plantations. – Publication FWS-3-72. Blacksburg, VA, Virginia Polytechnic Institute and State University, Division of Forestry and Wildlife Resources. 51 pp.
Çatal, Y., Carus, S. 2018. A height-diameter model for brutian pine (Pinus Brutia Ten.) plantations in southwestern Turkey. – Applied Ecology and Environmental Research, 16(2), 1445–1459.
Chapman, D.G. 1961. Statistical problems in dynamics of exploited fisheries populations. – Neyman, J. (ed.). Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4. Berkeley, CA, University of California Press, 153–168.
Cui, K., Wu, X., Zhang, C., Zhao, X., von Gadow, K. 2022. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China. – Forest Ecology and Management, 519, 120298. https://doi.org/10.1016/j.foreco.2022.120298.
Duan, G., Gao, Z., Wang, Q., Fu, L. 2018. Comparison of different height–diameter modelling techniques for prediction of site productivity in natural unevenaged pure stands. – Forests, 9(2), 63. https://doi.org/10.3390/f9020063.
Hanus, M.L., Marshall, D.D., Hann, D.W. 1999. Height-diameter equations for six species in the coastal regions of the Pacific Northwest. – Research Contribution 25. Corvallis, Oregon, Oregon State University, Forest Research Laboratory. 11 pp.
Hoßfeld, J.W. 1823. Forest taxation in its entirety in two volumes. (Forsttaxation nach ihrem ganzen Umfange in zwei Bänden). Hildburghausen, Kesselring 1823/24. 352 pp. (In German).
Huang, S., Price, D., Titus, S.J. 2000. Development of ecoregion-based height–diameter models for white spruce in boreal forests. – Forest Ecology and Management, 129(1–3), 125–141. https://doi.org/10.1016/S0378-1127(99)00151-6.
Huang, S., Titus, S.J., Wiens, D.P. 1992. Comparison of nonlinear height-diameter functions for major Alberta tree species. – Canadian Journal of Forest Research, 22(9), 1297–1304. https://doi.org/10.1139/x92-172.
Kangur, A., Nigul, K., Padari, A., Kiviste, A., Korjus, H., Laarmann, D., Põldveer, E., Mitt, R., Frelich, L.E., Jõgiste, K., Stanturf, J.A., Paluots, T., Kängsepp, V., Jürgenson, H., Noe, S.M., Sims, A., Metslaid, M. 2021. Composition of live, dead and downed trees in Järvselja old-growth forest. – Forestry Studies / Metsanduslikud Uurimused, 75, 15–40.
Kiviste, A., Álvarez Gonzáles, J.G., Rojo Alboreca, A., Ruiz González, A.D. 2002. Forest Growth Functions. (Funciones de crecimiento de aplicación en el ámbito forestal). Madrid, Monografías INIA: Forestal No. 4. 190 pp. (In Spanish).
Kiviste, A., Hordo, M. 2002. Network of permanent forest growth plots in Estonia. (Eesti metsa kasvukäigu püsiproovitükkide võrgustik). – Forestry Studies / Metsanduslikud Uurimused, 37, 43–58. (In Estonian with English summary).
Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38.
Lebedev, A.V. 2020. New generalized height-diameter models for birch stands in European Russia. – Baltic Forestry, 26(2). https://doi.org/10.46490/BF499.
Lei, Y., Parresol, B.R. 2001. Remarks on height-diameter modeling. – Research Note SRS-10. Asheville, North Carolina, U.S. Department of Agriculture, Forest Service, Southern Research Station. 5 pp.
Misik, T., Antal, K., Kárász, I., Tóthmérész, B. 2016. Nonlinear height–diameter models for three woody, understory species in a temperate oak forest in Hungary. – Canadian Journal of Forest Research, 46(11), 1337–1342. https://doi.org/10.1139/cjfr-2015-0511.
Näslund, M. 1936. Forest research intitute’s thinning experiments in pine forests. (Skogsförsöksanstaltens gallringsförsök i tallskog). – Reports of the Swedish Institute of Experimental Forestry, (Meddelanden från Statens Skogsförsöksanstalt), 29, 1–169. (In Swedish with German summary).
Nigul, K., Padari, A., Kiviste, A., Noe, S.M., Korjus, H., Laarmann, D., Frelich, L.E., Jõgiste, K., Stanturf, J.A., Paluots, T., Põldveer, E., Kängsepp, V., Jürgenson, H., Metslaid, M., Kangur, A. 2021. The possibility of using the Chapman–Richards and Näslund functions to model height–diameter relationships in hemiboreal old-growth forest in Estonia. – Forests, 12(2), 184. https://doi.org/10.3390/f12020184.
Nilson, A. 2002a. Weight function for non-linear transformation of regression equations. (Teisenduskaalust regressioonivõrrandite lineariseerimisel). – Forestry Studies / Metsanduslikud Uurimused, 37, 89–112. (In Estonian with English summary).
Nilson, A. 2002b. Some fragments of stand growth and structure models. (Fragmente puistu kasvu ja ehituse mudelitest). – Forestry Studies / Metsanduslikud Uurimused, 37, 9–20. (In Estonian with English summary).
Padari, A. 1994. Principles of selecting height/diameter curves. (Kõrguse kõverate valiku põhimõtted). Teadustööde Kogumik, 173, 134–143. (In Estonian).
Paulo, J.A., Tomé, J., Tomé, M. 2011. Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands. – Annals of Forest Science, 68, 295–309. https://doi.org/10.1007/s13595-011-0041-y.
R Core Team. 2025. R: A Language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. [WWW document]. – URL https://www.R-project.org/. [Accessed 10 January 2025].
Sharma, M., Parton, J. 2007. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. – Forest Ecology and Management, 249(3), 187–198. https://doi.org/10.1016/j.foreco.2007.05.006.
Soares, P., Tomé, M. 2002. Height–diameter equation for first rotation eucalypt plantations in Portugal. – Forest Ecology and Management, 166(1–3), 99–109. https://doi.org/10.1016/S0378-1127(01)00674-0.
Tarmu, T., Laarmann, D., Kiviste, A. 2020. Mean height or dominant height – what to prefer for modelling the site index of Estonian forests? – Forestry Studies / Metsanduslikud Uurimused, 72, 121–138.
Temesgen, H., Hann, D.W., Monleon, V.J. 2007. Regional height–diameter equations for major tree species of southwest Oregon. – Western Journal of Applied Forestry, 22(3), 213–219. https://doi.org/10.1093/wjaf/22.3.213.
Temesgen, H., v. Gadow, K. 2004. Generalized height–diameter models – an application for major tree species in complex stands of interior British Columbia. – European Journal of Forest Research, 123, 45–51.
Vargas-Larreta, B., Castedo-Dorado, F., Álvarez-González, J.G., Barrio-Anta, M., Cruz-Cobos, F. 2009. A generalized height–diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). – Forestry: An International Journal of Forest Research, 82(4), 445–462. https://doi.org/10.1093/forestry/cpp016.
Woollons, R.C. 2003. Examination of mean top height definitions and height estimation equations for Pinus radiata in New Zealand. – New Zealand Journal of Forestry, 48(3), 15–18.
Wykoff, W.R., Crookston, N.L., Stage, A.R. 1982. User’s guide to the stand prognosis model. – General Technical Report INT-133. Ogden, UT, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 112 pp.