References
- Ågren, G.I. 2008. Stoichiometry and nutrition of plant growth in natural communities. – Annual Review of Ecology, Evolution, and Eystematics, 39, 153–170. https://doi.org/10.1146/annurev.ecolsys.39.110707.173515.
- Ågren, G.I., Weih, M. 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. – New Phytologist, 194(4), 944–952. https://doi.org/10.1111/j.1469-8137.2012.04114.x.
- Ågren, G.I., Weih, M. 2020. Multi-dimensional plant element stoichiometry–looking beyond carbon, nitrogen, and phosphorus. – Frontiers in Plant Science, 11, 23. https://doi.org/10.3389/fpls.2020.00023.
- Ding, D., Arif, M., Liu, M., Li, J., Hu, X., Geng, Q., Yin, F., Li, C. 2022. Plant-soil interactions and C:N:P stoichiometric homeostasis of plant organs in riparian plantation. – Frontiers in Plant Science, 13, 979023. https://doi.org/10.3389/fpls.2022.979023.
- Fortunel, C., Fine, P.V.A., Baraloto, C. 2012. Leaf, stem and root tissue strategies across 758 Neotropical tree species. – Functional Ecology, 26(5), 1153–1161. https://doi.org/10.1111/j.1365-2435.2012.02020.x.
- Güsewell, S. 2004. N:P ratios in terrestrial plants: variation and functional significance. – New Phytologist, 164(2), 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x.
- Hu, L., Ade, L., Wu, X., Zi, H., Luo, X., Wang, C. 2019. Changes in soil C:N:P stoichiometry and microbial structure along soil depth in two forest soils. – Forests, 10(2), 113. https://doi.org/10.3390/f10020113.
- Huang, J., Wang, P., Niu, Y., Yu, H., Ma, F., Xiao, G., Xu, X. 2018. Changes in C:N:P stoichiometry modify N and P conservation strategies of a desert steppe species Glycyrrhiza uralensis. – Scientific Reports, 8, 12668. https://doi.org/10.1038/s41598-018-30324-w.
- Knecht, M.F., Göransson, A. 2004. Terrestrial plants require nutrients in similar proportions. – Tree Physiology, 24(4), 447–460. https://doi.org/10.1093/treephys/24.4.447.
- Li, F., Sun, B., Shi, Z., Pei, N. 2021. Changes in ecological stoichiometry and nutrient resorption in Castanopsis hystrix plantations along an urbanization gradient in the lower subtropics. – Journal of Forestry Research, 32, 2323–2331. https://doi.org/10.1007/s11676-021-01293-0.
- Li, H., Crabbe, M.J.C., Xu, F., Wang, W., Niu, R., Gao, X., Zhang, P., Chen, H. 2017. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. Plantations. – Forests, 8(10), 373. https://doi.org/10.3390/f8100373.
- Liu, Q., Huang, Z., Wang, Z., Chen, Y., Wen, Z., Liu, B., Tigabu, M. 2020. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. – BMC Plant Biology, 20, 354. https://doi.org/10.1186/s12870-020-02556-4.
- Minden, V., Kleyer, M. 2014. Internal and external regulation of plant organ stoichiometry. – Plant Biology, 16(5), 897–907. https://doi.org/10.1111/plb.12155.
- Naeem, M., Masroor, M., Khan, A., Nasir Khan, M. 2009. Promotive effects of phosphorus on crop productivity, enzyme activities, anthraquinone and sennoside content in Cassia tora L. – a medicinal herb. – Journal of Plant Interactions, 4(1), 49–57. https://doi.org/10.1080/17429140802323338.
- Peng, Y., Niklas, K.J., Sun, S. 2011. The relationship between relative growth rate and whole-plant C:N:P stoichiometry in plant seedlings grown under nutrient-enriched conditions. – Journal of Plant Ecology, 4(3), 147–156. https://doi.org/10.1093/jpe/rtq026.
- Sardans, J., Peñuelas, J. 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. – Plant Physiology, 160(4), 1741–1761. https://doi.org/10.1104/pp.112.208785.
- Sistla, S.A., Schimel, J.P. 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. – New Phytologist, 196(1), 68–78. https://doi.org/10.1111/j.1469-8137.2012.04234.x.
- Tian, D., Reich, P.B., Chen, H.Y.H., Xiang, Y., Luo, Y., Shen, Y., Meng, C., Han, W., Niu, S. 2019. Global changes alter plant multi-element stoichiometric coupling. – New Phytologist, 221(2), 807–817. https://doi.org/10.1111/nph.15428.
- Wang, M., Wang Y., Ren, H., Yang, Y., Gu, T., He, J., Gao, S. 2023b. Effects of nitrogen on growth parameters and photosynthetic characteristics of P. chinense Schneid. seedlings in three soil types. – Journal of Elementology, 28(2), 279–294. http://dx.doi.org/10.5601/jelem.2022.27.3.2328.
- Wang, Z., Xiong, K., Wu, C., Luo, D., Xiao, J., Shen, C. 2023a. Characteristics of soil moisture variation in agroforestry in karst region. – Land, 12(2), 347. https://doi.org/10.3390/land12020347.
- Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H. 2004. Ecological linkages between aboveground and belowground biota. – Science, 304(5677), 1629–1633. https://doi.org/10.1126/science.1094875.
- Xie, T., Shan, L., Zhang, W. 2022. N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China. – Scientific Reports, 12, 15390. https://doi.org/10.1038/s41598-022-19280-8.
- Xu, L.J., Qiu, J.J., Sun, M.L., Zhang, Y.H., Xia, C.M., Zhou, Z.Q. 2014. The seasonal and geographical variance analysis of the berberine and jatrorrhizine contents in natural populations of Phellodendron amurense. – Acta Ecologica Sinica, 34 (21), 6355–6365. https://doi.org/10.5846/stxb201302060255.
- Yan, C., Zhang, Y.D., Wang, X.H., Geng, S.D., Wang, T.Y., Sun, M., Liang, W., Zhang, W.Q., Zhang, X.D., Luo, H. 2016. Tirucallane-type triterpenoids from the fruits of Phellodendron chinense Schneid and their cytotoxic activities. – Fitoterapia, 113, 132–138. https://doi.org/10.1016/j.fitote.2016.07.020.
- Yan, P., He, N., Yu, K., Xu, L., Van Meerbeek, K. 2023. Integrating multiple plant functional traits to predict ecosystem productivity. – Communications Biology, 6(1), 239. https://doi.org/10.1038/s42003-023-04626-3.
- Yang, L., Meng, X., Li, H., Ding, D., Sun, C., Ye, M., Xiang, L. 2019. Globally ecological suitability analysis of Phellodendron chinense and Phellodendron amurense. – Chinese Journal of Experimental Traditional Medical Formulae, 25(4), 167–174. https://doi.org/10.13422/j.cnki.syfjx.20182491. (In Chinese with English summary).
- Yang, S., Shi, J., Chen, L., Zhang, J., Zhang, D., Xu, Z., Xiao, J., Zhu, P., Liu, Y., Lin, T., Zhang, L., Yang, H., Zhong, Y. 2020. Physiological and biomass partitioning shifts to water stress under distinct soil types in Populus deltoides saplings. – Journal of Plant Ecology, 13(5), 545–553. https://doi.org/10.1093/jpe/rtaa042.
- Yu, O.T., Greenhut, R.F., O’Geen, A.T., Mackey, B., Horwath, W.R., Steenwerth, K.L. 2019. Precipitation events, soil type, and vineyard management practices influence soil carbon dynamics in a Mediterranean climate (Lodi, California). – Soil Science Society of America Journal, 83(3), 772–779. https://doi.org/10.2136/sssaj2018.09.0345.
- Yuan, Y.F., Tao, Z.H., Liu, J.X., Tian, C.H., Wang, G.W., Li, Y.Q. 2011. Identification of Cortex Phellodendri by Fourier-transform infrared spectroscopy and principal component analysis. – Spectroscopy and Spectral Analysis, 31(5), 1258–1261. (In Chinese with English summary).
- Zhang, C., Zeng, F.P., Zeng, Z.X., Du, H., Zhang, L.J., Su, L., Lu, M.Z., Zhang H. 2022. Carbon, nitrogen and phosphorus stoichiometry and its influencing factors in karst primary forest. – Forests, 13(12), 1990. https://doi.org/10.3390/f13121990.
- Zhi, X., Yang, Y., Zou, J., Ma, N., Liu, T., Wang, H., Hu, Y., Gao, S. 2022. Responses of the growth and nutrient stoichiometry in Ricinus communis seedlings on four soil types. – Journal of Elementology, 27(2), 223–238. https://doi.org/10.5601/jelem.2022.27.2.2224.