Have a personal or library account? Click to login
An experimental determination of the critical diffusion coefficient and critical relative humidity (RH) of drying air when optimizing the drying of three hardwood species (birch, aspen, and black alder) Cover

An experimental determination of the critical diffusion coefficient and critical relative humidity (RH) of drying air when optimizing the drying of three hardwood species (birch, aspen, and black alder)

Open Access
|Apr 2024

References

  1. Aboltins, A., Kic, P. 2019. Determination of the mass diffusion coefficient of wood by thin-layer drying kinetics. – Agronomy Research, 17(1), 5–12.
  2. Ahlborn. [WWW document]. – URL http://www.ahlborn.com. [Accessed 22 October 2023].
  3. Baronas, R., Ivanauskas, F., Sapagovas, M. 2002. Reliability of one dimensional model of moisture diffusion in wood. – Informatica, 13(4), 405–416.
  4. Crank, J. 1956. The Mathematics of Diffusion. Oxford, Clarendon Press. 347 pp.
  5. Danvind, J. 2005. Analysis of drying wood based on nondestructive measurements and numerical tools. – Doctoral thesis. Luleå, Sweden, Luleå University of Technology. 124 pp.
  6. EN 13183-2:2005. 2005. Moisture content of a piece of sawn timber – Part 2: Estimation by electrical resistance method. Brussels, Belgium, European Committee for Standardization 6 pp.
  7. Feutron Klimasimulation GmbH. [WWW document]. – URL https://www.feutron.de/en/weathering-chamber/. [Accessed 22 October 2023].
  8. Fick, A. 1855. Ueber Diffusion. – Pogendorff, J.C. (ed.). Annalen der Physik und Chemie, Vol. 94, 59–86. (In German).
  9. Kretchetov, I.V. 1972. Kiln Drying. (Сушка древесины). Moscow, Lesnaya Promyshlennost. 440 pp. (In Russian).
  10. Luikov, A.V. 1966. Heat and Mass Transfer in Capillary-Porous Bodies. New York, Pergamon Press. 523 pp.
  11. Mändoja, M. 2015. Wood drying simulation “TORKSIM” adjusting to actual industrial drying curve in order to improve the reliability of tension calculations and electrical humidity sensors. ((Puidu kuivatuse simulatsiooniprogrammi “TORKSIM” sobitamine reaalse tööstusliku kuivatuskõveraga, eesmärgiga tõsta pinge arvutuste ja elektriliste niiskusandurite usaldusväärsust). – Bachelor thesis. Tartu, Estonian University of Life Sciences. 51 pp. (In Estonian with English summary).
  12. Naarits, A. 2018. Optimization of drying quality and energy consumption of Scots pine and Norway spruce lumber in AS Aegviidu Puit – a case study. (Männi- ja kuusepuidu kuivatuse kvaliteedi ja energiakulu optimeerimise võimalused AS Aegviidu Puit kuivatite näitel). – Master thesis. Tartu, Estonian University of Life Sciences. 77 pp. (In Estonian with English summary).
  13. Poljakov, A. 2013. Wood material comparison of actual moisture content monitoring data in wood dryer “Mühlböck” and “Hekotek”. (Puitmaterjali tegeliku niiskussisalduse võrdlus monitooringu andmetega puidu kuivatites “Mühlböck” ja “Hekotek”). – Master thesis. Tartu, Estonian University of Life Sciences. 125 pp. (In Estonian).
  14. R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL http://www.r-project.org/. [Accessed 13 April 2023].
  15. Salin, J.G. 1990. Simulation of the timber drying process. Prediction of moisture and quality changes. – Doctoral thesis. Helsinki, Finland, EKONO Oy. 103 pp.
  16. Salin, J.G. 2007. Lectures. Riga, 2007. [WWW document]. – URL http://www.coste53.net/downloads/WG2/WG2-Riga/Lectures/Riga2007-Salin.pdf. [Accessed 22 October 2023].
  17. Scanntronik Mugrauer GmbH. [WWW document]. – URL www.scanntronik.de/. [Accessed 22 October 2023].
  18. Sova, D., Bedelean, B., Sandu, V. 2016. Application of Response Surface Methodology to optimization of wood drying conditions in a pilot-scale kiln. – Baltic Forestry, 22(2), 348–356.
  19. Tamme, H. 2023. Development of control and optimization methods for wood drying. – Doctoral thesis. Tartu, Estonian University of Life Sciences. 181 pp.
  20. Tamme, H., Muiste, P., Tamme, V. 2021a. Optimizing the pine wood drying process using a critical diffusion coefficient and a timed moistening impulse. – Forestry Studies / Metsanduslikud Uurimused, 75, 150–165.
  21. Tamme, V. 2016. Development of resistance-type control methods for wood drying. – PhD thesis. Tartu, Estonian University of Life Sciences. 135 pp.
  22. Tamme, V., Muiste, P., Mitt, R., Tamme, H. 2011. Determination of effective diffusion coefficient and mechanical stress of pine wood during convective drying. – Baltic Forestry, 17(1), 110–117.
  23. Tamme, V., Tamme, H., Muiste, P. 2021b. Development of experimental and theoretical methodology for optimization of quality and energy consumption of convective drying of wood (chamber drying and tunnel drying. (Puidu konvektiivkuivatuse (kamberkuivatus ja tunnelkuivatus) kvaliteedi ja energiakulu optimeerimise eksperimentaalse ja teoreetilise metoodika välja töötamine.) – KIK metsanduse programmi projekti nr. 16200 lõpparuanne, 44 pp. [WWW document]. – URL https://mi.emu.ee/userfiles/instituudid/mi/MI/Projektid/Projekt1620.pdf. [Accessed 22 October 2023]. (In Estonian).
  24. Tremblay, C., Cloutier, A., Fortin, Y. 2000. Experimental determination of the convective heat and mass transfer coefficients for wood drying. – Wood Science and Technology, 34(3), 253–276. https://doi.org/10.1007/s002260000045.
  25. Tronstad, S., Sandland, K.M., Toverød, H. 2001. Drying quality of softwood based on 140 industrial tests in Norwegian sawmills and actions to improve the quality. – Proceedings of the 3 rd workshop of COST Action E15 on softwood drying to specific end-uses. Advances in the drying of wood (1999–2003). Finland, 11–13 June, Helsinki, 13 pp.
  26. Welling, J. 2010. Dried timber - how to specify correctly. European Drying Group (EDG) and COST E53. 38 pp.
DOI: https://doi.org/10.2478/fsmu-2023-0009 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 3 - 20
Published on: Apr 13, 2024
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Hannes Tamme, Regino Kask, Peeter Muiste, Valdek Tamme, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.