Have a personal or library account? Click to login
Investigation and modelling of the electrical charging effect in birch wood above the fibre saturation point (FSP) Cover

Investigation and modelling of the electrical charging effect in birch wood above the fibre saturation point (FSP)

Open Access
|May 2023

References

  1. Ahlborn. [WWW document]. – URL https://www.ahlborn.com/de_DE/produkte/materialfeuchtegeber. [Accessed 18 October 2022].
  2. Bard A.J., Faulkner L.R. 1980. Electrochemical Methods: Fundamentals and Applications. 1st Edition. New York, John Wiley & Sons. 864 pp.
  3. BES Bollmann Drying and Control Systems. [WWW document]. – URL https://www.bes-bollmann.com/. [Accessed 18 October 2022].
  4. Björngrim N., Fjellström P.-A., Hagman O. 2017. Resistance measurements to find high moisture content inclusions adapted for large timber bridge cross-sections. – BioResources, 12(2), 3570–3582.
  5. Brischke C., Rapp A.O. 2008. Influence of wood moisture content and wood temperature on fungal decay in the field: observations in different micro-climates. – Wood Science and Technology, 42, 663–677.
  6. Brookhuis Micro-Electronics BV. 2009. Moisture measuring manual Version 1.4. 27 pp.
  7. Casans Berga S., Garcia-Gil R., Navarro Anton A.E., Rosado-Muñoz A. 2019. Novel wood resistance measurement method reducing the initial transient instabilities arising in DC methods due to polarization effects. – Electronics, 8(11), 1253.
  8. EN 13183-2:2002. 2002. Moisture content of a piece of sawn timber – Part 2: Estimation by electrical resistance method. Brussels, Belgium, European Committee for Standardization (CEN). 6 pp.
  9. Forsén H., Tarvainen V. 2000. Accuracy and functionality of hand held wood moisture content meters. Espoo, VTT Technical Research Centre of Finland, VTT Publications No. 420. 96 pp. https://publications.vtt.fi/pdf/publications/2000/P420.pdf.
  10. Gann Mess- und Regeltechnik GmbH. [WWW document]. – URL http://www.gann.de. [Accessed 18 October 2022].
  11. Gao S., Bao Z., Wang L., Yue X. 2018. Comparison of voltammetry and digital bridge methods for electrical resistance measurements in wood. – Computers and Electronics in Agriculture, 145(C), 161–168.
  12. James Instruments. [WWW document]. – URL https://www.ndtjames.com/Aquameter_p/t-m-170.htm. [Accessed 18 October 2022].
  13. Keithley. 2004. Low Level Measurements Handbook. 6th Edition. 239 pp. [WWW document]. – URL http://web.mit.edu/8.13/8.13d/manuals/LowLevMsHandbk.pdf. [Accessed 18 October 2022].
  14. Krause S. 2003. Impedance methods. – Bard, A.J., Stratmann M., Unwin P.R. (eds.). Encyclopedia of Electrochemistry, Vol. 3, Instrumentation and Electroanalytical Chemistry. Weinheim, Germany, Wiley-VCH, 196–229.
  15. Li H., Perrin M., Eyma F., Jacob X., Gibia V. 2018. Moisture content monitoring in glulam structures by embedded sensors via electrical methods. – Wood Science and Technology, 52, 733–752. https://doi.org/10.1007/s00226-018-0989-y.
  16. Martin T. 2012. Complex resistivity measurements on oak. – European Journal of Wood and Wood Products, 70(1), 45–53.
  17. Metrohm Autolab. [WWW document]. – URL http://www.ecochemie.nl. [Accessed 18 October 2022].
  18. Norberg P. 1999. Electrical measurement of moisture content in porous building materials. – Proceedings of the 8th International Conference on Durability of Building Materials and Components (8DBMC). Canada, 30 May-3 June. Vancouver, 1030–1039.
  19. Norberg P. 2000. Monitoring wood moisture content using the WETCORR method. Part 2: calibration and validation. – Holz als Roh-und Werkstoff, 58, 129–134. https://doi.org/10.1007/s001070050403.
  20. Pelton W.H., Ward S.H., Hallof P.G., Sill W.R., Nelson P.H. 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP. – Geophysics, 43(3), 588–609. https://doi.org/10.1190/1.1440839.
  21. Scanntronik Mugrauer GmbH. [WWW document]. – URL www.scanntronik.de/. [Accessed 13 April 2022].
  22. Scribner Inc. 2022. ZView for Windows (version 2.3). [WWW document]. – URL https://www.scribner.com/software/68-general-electrochemistr376-zview-for-windows/. [Accessed 18 October 2022].
  23. Seigel H., Nabighian M., Parasnis D.S., Vozoff K. 2007. The early history of the induced polarization method. – The Leading Edge, 26(3), 312–321.
  24. Skaar C. 1964. Some factors involved in the electrical determination of moisture gradients in wood. – Forest Products Journal, 14(6), 239–243.
  25. Skaar C. 1988. Electrical properties of wood. – Skaar, C. (ed.). Wood-Water Relations. Berlin, Springer-Verlag, 207–262.
  26. Stamm A.J. 1927. The electrical resistance of wood as a measure of its moisture content. – Industrial and Engineering Chemistry, 19(9), 1021–1025.
  27. Sumner J.S. 1976. Principles of Induced Polarization for Geophysical Exploration. Amsterdam, Elsevier Scientific Publishing Company. 277 pp.
  28. Tamme V., Muiste P., Kask R., Tamme H. 2012. Experimental study of electrode effects of resistance type electrodes for monitoring wood drying process above fibre saturation point. – Forestry Studies /Metsanduslikud Uurimused, 56, 42–55. https://doi.org/10.2478/v10132-012-0004-6.
  29. Tamme V., Muiste P., Padari A., Tamme H. 2014. Modelling of resistance-type wood moisture meters for three deciduous tree species (black alder, birch, aspen) in moisture contents above fibre saturation point. – Baltic Forestry, 20(1), 157−166.
  30. Tamme V., Muiste P., Tamme H. 2013. Experimental study of resistance type wood moisture sensors for monitoring wood drying process above fibre saturation point. – Forestry Studies /Metsanduslikud Uurimused, 59, 28−44. https://doi.org/10.2478/fsmu-2013-0009.
  31. Tamme V., Tamme H., Bernotas T., Muiste P., Olt J. 2020. Moisture meter and method for measuring the moisture content of wood above the fibre saturation point of a wood with the electric charging effect. Patent no. EE 05822B1, Priority: 16.07.2018. [WWW document]. – URL https://ee.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=ee_EE&FT=D&date=20200217&CC=EE&NR=201800017A&KC=A. [Accessed 3 August 2022].
  32. Tamme V., Tamme H., Miidla P., Muiste P. 2021. Novel polarization-type moisture meter for determining moisture content of wood above fibre saturation point. – European Journal of Wood and Wood Products, 79, 1577–1587. http://link.springer.com/article/10.1007/s00107-021-01682-6.
  33. Tiitta M., Savolainen T., Olkkonen H., Kanko T. 1999. Wood moisture gradient analysis by electrical impedance spectroscopy. – Holzforschung, 53, 68–76.
  34. Uwizeyimana P., Perrin M., Eyma F. 2020. Moisture monitoring in glulam timber structures with embedded resistive sensors: study of influence parameters. – Wood Science and Technology, 54, 1463–1478. https://doi.org/10.1007/s00226-020-01228-8.
  35. Vermaas H.F. 1975. Experimental variables affecting the measurement of the DC resistance of wood. – Holzforschung, 29(4), 140–144. https://doi.org/10.1515/hfsg.1975.29.4.140.
  36. Zelinka S.L., Rammer D.R., Stone D.S. 2008. Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content. – Holzforschung, 62(6), 737–744.
  37. Zelinka S.L., Stone D.S., Rammer D.R. 2007. Equivalent circuit modeling of wood at 12% moisture content. – Wood and Fiber Science, 39(4), 556–565.
  38. Zuleta M. 2005. Electrochemical and ion transport characterisation of nanoporous carbon derived from SiC. – Doctoral thesis, Stockholm, Sweden, KTH-Royal Institute of Technology, Department of Chemical Engineering and Technology. 85 pp. [WWW document]. – URL http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A7694&dswid=-1261. [Accessed 18 October 2022].
DOI: https://doi.org/10.2478/fsmu-2022-0010 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 21 - 37
Submitted on: Dec 3, 2022
Accepted on: Dec 28, 2022
Published on: May 4, 2023
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Valdek Tamme, Alar Jänes, Tavo Romann, Hannes Tamme, Peeter Muiste, Ahto Kangur, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.