Aleinikovas, M., Grigaliūnas, J. 2006. Differences of pine (Pinus sylvestris L.) wood physical and mechanical properties from different forest site types in Lithuania. – Baltic Forestry, 12(1), 9–13.
Bektas, I., Alma, M.H., Goker, Y., Yuksel, A., Gundogan, R. 2003. Influence of site on sapwood and heartwood ratios of Turkish calabrian pine. – Forest Products Journal, 53(4), 48–50.
Bergès, L., Nepveu, G., Franc, A. 2008. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. – Forest Ecology and Management, 255(3–4), 567–579. https://doi.org/10.1016/j.foreco.2007.09.027.
Björklund, L., Walfridsson, E. 1993. Properties of Scots pine wood in Sweden - Basic density, heartwood, moisture and bark content. (Tallvedens egenskaper i Sverige – Torr-rådensitet, kärnvedhalt, fuktighet och barkhalt). – Report No. 234. Uppsala, Swedish University of Agricultural Sciences, Department of Forest Products, 1–67. (In Swedish with English summary).
Climent, J., Chambel, M.R., Pérez, E., Gil, L., Pardos, J. 2002. Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. – Canadian Journal of Forest Research, 32(1), 103–111. https://doi.org/10.1139/x01-178.
Crivellaro, A., Ruffinatto, F. 2021. From trees to wood and beyond: A brief look into wood structure / Vom Baum zum Wald und darüber hinaus. Ein kurzer Ausflug in die Holzstruktur. – Kaden, T. (ed.). Wood. Rethinking Material. Berlin, JOVIS Verlag GmbH, 202–213. https://doi.org/10.1515/9783868599633-015.
Fries, A., Ericsson, T. 1998. Genetic parameters in diallel-crossed Scots pine favor heartwood formation breeding objectives. – Canadian Journal of Forest Research, 28(6), 937–941. https://doi.org/10.1139/x98-061.
Hakkila, P. 1979. Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. – Communicationes Instituti Forestalis Fenniae, 96, 1–59.
ISO 13061-2:2014. 2014. Physical and mechanical properties of wood –Test methods for small clear wood specimens – Part 2: Determination of density for physical and mechanical tests. Geneva, Switzerland, International Organization for Standardization, Switzerland. 5 pp.
ISO 13061-3:2014. 2014. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 3: Determination of ultimate strength in static bending. Geneva, Switzerland, International Organization for Standardization. 5 pp.
ISO 13061-12:2017. 2017. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 12: Determination of static hardness. Geneva, Switzerland, International Organization for Standardization. 3 pp.
ISO 13061-17:2017. 2017. Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 17: Determination of ultimate stress in compression parallel to grain. Geneva, Switzerland. International Organization for Standardization. 4 pp.
Kärenlampi, P.P., Riekkinen, M. 2002. Pine heartwood formation as a maturation phenomenon. – Journal of Wood Science, 48, 467–472. https://doi.org/10.1007/BF00766641.
Kärenlampi, P.P., Riekkinen, M. 2004. Maturity and growth rate effects on Scots pine basic density. – Wood Science and Technology, 38, 465–473. https://doi.org/10.1007/s00226-004-0243-7.
Kask, R. 2015. The influence of growth conditions on physico-mechanical properties of Scots pine (Pinus sylvestris L.) wood in Estonia. – Doctoral thesis. Tartu, Estonian University of Life Sciences. 157 pp.
Konofalska, E., Kozakiewicz, P., Buraczyk, W., Szeligowski, H., Lachowicz, H. 2021. The technical quality of the wood of Scots pine (Pinus sylvestris L.) of diverse genetic origin. – Forests, 12(5), 619. https://doi.org/10.3390/f12050619.
Lagana, R., Mamoňová, M., Haviarova, E. 2008. Quality of scotch pine wood (Pinus sylvestris L.) from sites of different growing conditions. – Proceedings of the 4th International Symposium “Interaction of Wood with Various Forms of Energy”, Slovakia, Sept. 2008. Zvolen, 147–153.
Lappi-Seppälä, M. 1952. Pine heartwood and stem shape. (Männyn sydänpuusta ja runkomuodosta. Referat: Über Verkernung und Stammform der Kiefer). – Communicationes Instituti Forestalis Fenniae, 40(25), 1–26. (In Finnish and German).
Lindeberg, J. 2001. X-ray based dendro-analyses of wood properties. – Report No. 50. Umeå, Swedish University of Agricultural Sciences, Department of Silviculture. (Sveriges lantbruksuniversitet, Institutionen för skogsskötsel). 19 pp.
Mäkinen, H. 1998. The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. – Forest Ecology and Management, 112(1–2), 191–197. https://doi.org/10.1016/S0378-1127(98)00337-5.
Mattsson, S. 2002. Effects of site preparation on stem growth and clear wood properties in boreal Pinus sylvestris and Pinus condarta. – Doctoral thesis. Umeå, Swedish University of Agricultural Sciences. 240, 1–37.
Meerts, P. 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. – Annals of Forest Science, 59(7), 713–722. https://doi.org/10.1051/forest:2002059.
Metslaid, S., Hordo, M., Korjus, H., Kiviste, A., Kangur, A. 2018. Spatio-temporal variability in Scots pine radial growth responses to annual climate fluctuations in hemiboreal forests of Estonia. – Agricultural and Forest Meteorology, 252, 283–295. https://doi.org/10.1016/j.agrformet.2018.01.018.
Metslaid, S., Sims, A., Kangur, A., Hordo, M., Jõgiste, K., Kiviste, A., Hari, P. 2011. Growth patterns from different forest generations of Scots pine in Estonia. – Journal of Forest Research, 16(3), 237–243.
Mörling, T., Valinger, E., 1999. Effects of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine. – Scandinavian Journal of Forest Research, 14(5), 462–469. https://doi.org/10.1080/02827589950154168.
Nekrasova, A.A. 1994. Properties of wood of conifers as a function of the growth conditions. (Свойства древесины хвойных пород в зависимости от условий произрастания). – Lesnoe hozjaistvo, 2, 22–24. (In Russian).
Ots, K. 2002. Impact of air pollution on the growth of conifers in the industrial region of Northeast Estonia. – Doctoral thesis. Tartu, Estonian Agricultural University. 222 pp.
Pikk, J., Kask, R., Kuusepuu, T., Peterson, P. 2004. The effect of growth conditions on Scots pine (Pinus sylvestris L.) wood properties. – Forestry Studies / Metsanduslikud Uurimused, 40, 187–197.
Rikala, J. 2003. Spruce and pine on drained peatlands - wood quality and suitability for the sawmill industry. – Doctoral thesis. Helsinki, University of Helsinki, Department of Forest Resource Management, Publications. 35, 147 pp.
Saladis, J., Aleinikovas, M. 2004. Variability and correlation of physical and mechanical properties of pine wood. (Pušų medienos fizinių ir mechaninių savybių kintamumas bei koreliaciniai ryšiai). – Miškininkystė, 1(55), 60–67. (In Lithuanian).
Savva, Y., Bergeron, Y., Denneler, B., Koubaa, A., Tremblay, F. 2008. Effect of interannual climate variations on radial growth of jack pine provenances in Petawawa, Ontario. – Canadian Journal of Forest Research, 38(3), 619–630. https://doi.org/10.1139/X07-178.
Sazonova, T.A., Pridacha, V.B. 2005. Mineral nutrient contents in pine and spruce organs under different soil conditions. (Содержание минеральных элементов в органах сосны и ели при варьировании почвенных условий). – Lesovedenije 5, 25–31. (In Russian).
Seco, J.I.F.-G., Barra, M.R.D. 1996. Growth rate as a predictor of density and mechanical quality of sawn timber from fast growing species. – Holz als Roh- und Werkstoff, 54(3), 171–174.
Spława-Neyman, S. 1994. Selected properties of Scots pine (Pinus sylvestris L.) wood in dependence upon forest stand type and age of the trees. – Prace Institutu Technologii Drevna, 137/138, 19–28.
Ståhl, E.G. 1998. Changes in wood and stem properties of Pinus sylvestris caused by provenance transfer. – Silva Fennica, 32(2), 163–172. https://doi.org/10.14214/sf.693.
Uusvaara, O. 1974. Wood quality in plantation-grown Scots pine. (Lyhennelmä: Puun laadusta viljelymänniköissä). – Communicationes Instituti Forestalis Fenniae, 80(2), 1–105.
Varhimo, A., Kojola, S., Penttilä, T., Laiho, R. 2003. Quality and yield of pulpwood in drained peatland forests: pulpwood properties of Scots pine in stands of first commercial thinnings. – Silva Fennica, 37(3), 343–357. https://doi.org/10.14214/sf.494.
Werberg, K. 1930. Sapwood and heartwood relationship in pine. (Lüli- ja maltspuu suhe männil). Tartu, Tartu Ülikooli Metsaosakonna toimetised. 17, 206 pp. (In Estonian).
Wilhelmsson, L., Arlinger, J., Spångberg, K., Lundqvist, S.-O., Grahn, T., Hedenberg, Ö., Olsson, L. 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. – Scandinavian Journal of Forest Research, 17(4), 330–350. https://doi.org/10.1080/02827580260138080.
Wimmer, R. 1991. Relations between growth ring parameters and density of Scots pine wood. (Beziehungen zwischen Jahrringparametern und Rohdichte von Kiefernholz). – Holzforschung und Holzverwertung, 43(4), 79–82. (In German).
Yang, K.C., Hazenberg, G. 1991. Relationship between tree age and sapwood/heartwood width in Populus Tremuloides Michx. – Wood and Fiber Science, 23(2), 247–252.
Zvirbul, A.P., Nekrasova, G.N., Polubojarinov, O.I. 1976. Effect of urea fertilization on pine stands on the wood quality. (Влияние удобрения сосновых насаждений карбамидом на качество древесины). – Lesnoi Zhurnal, 6, 18–22.