Kask, R., Mitt, R. 2021. Increasing the potential for the use of red cored gray alder, black alder and birch wood by heat treatment. (Punasüdamikuga halli lepa-, sanglepa-, ja kasepuidu kasutusvõimaluste suurendamine termilise töötlemise abil.) – KIK metsanduse programmi projekti nr. 16531 lõpparuanne, 33 pp. [WWW document]. – URL https://mi.emu.ee/teadusinfo/projektide-aruanded/kik-projektid/ [Accessed 22 October 2021]. (In Estonian).
Mändoja, M. 2015. Wood drying simulation “TORKSIM” adjusting to actual industrial drying curve in order to improve the reliability of tension calculations and electrical humidity sensors. (Puidu kuivatuse simulatsiooniprogrammi “TORKSIM” sobitamine reaalse tööstusliku kuivatuskõveraga, eesmärgiga tõsta pinge arvutuste ja elektriliste niiskusandurite usaldusväärsust). – Bachelor thesis. Tartu, Estonian University of Life Sciences. 51 pp. (In Estonian with English summary).
Poljakov, A. 2013. Wood material comparison of actual moisture content monitoring data in wood dryer “Mühlböck” and “Hekotek”. (Puitmaterjali tegeliku niiskussisalduse võrdlus monitooringu andmetega puidu kuivatites “Mühlböck” ja “Hekotek”) – Master thesis. Tartu. Estonian University of Life Sciences. 125 pp. (In Estonian).
Sova, D., Bedelean, B., Sandu, V. 2016. Application of Response Surface Methodology to optimization of wood drying conditions in a pilot-scale kiln. – Baltic Forestry, 22(2), 348–356.
Tamme, H. 2013. Process management framework on the example of convective drying of wood and spectroelectrochemistry. – MSc. thesis. Tartu, University of Tartu. 25 pp.
Tamme, V., Muiste, P., Mitt, R., Tamme, H. 2011. Determination of effective diffusion coefficient and mechanical stress of pine wood during convective drying. – Baltic Forestry, 17(1), 110–117.
Tamme, V., Muiste, P., Padari, A., Tamme, H. 2014. Modelling of resistance-type wood moisture meters for three deciduous tree species (black alder, birch, aspen) in moisture contents above fibre saturation point. – Baltic Forestry, 20(1), 157–166.
Tamme, V., Tamme, H., Muiste, P. 2021. Development of experimental and theoretical methodology for optimization of quality and energy consumption of convective drying of wood (chamber drying and tunnel drying. (Puidu konvektiivkuivatuse (kamberkuivatus ja tunnelkuivatus) kvaliteedi ja energiakulu optimeerimise eksperimentaalse ja teoreetilise metoodika välja töötamine.) – KIK metsanduse programmi projekti nr. 16200 lõpparuanne, 44 pp. [WWW document]. – URL https://mi.emu.ee/userfiles/instituudid/mi/MI/Projektid/Projekt1620.pdf. [Accessed 22 October 2021]. (In Estonian).
Tremblay, C., Cloutier, A., Fortin, Y. 2000. Experimental determination of the convective heat and mass transfer coefficients for wood drying. – Wood Science and Technology, 34(3), 253–276. https://doi.org/10.1007/s002260000045.
Tronstad, S., Sandland, K.M., Toverød, H. 2001. Drying quality of softwood based on 140 industrial tests in Norwegian sawmills and actions to improve the quality. – Proceedings of the 3 rd workshop of COST Action E15 on softwood drying to specific end-uses. Advances in the drying of wood (1999–2003). Finland, 11–13 June, Helsinki, 13 pp.