References
- Abirami, A.M., Askarunisa, A. 2017. Sentiment analysis model to emphasize the impact of online reviews in healthcare industry. Online Information Review, 41(4), pp.471–486.
- Albesta, D.D., Jonathan, M.L., Jawad, M., Hardiawan, O., Suhartono, D. 2021. The impact of sentiment analysis from user on Facebook to enhanced the service quality. International Journal of Electrical & Computer Engineering (2088–8708), 11(4), pp.3424–3433.
- Archak, N., Ghose, A., Ipeirotis, P.G., 2011. Deriving the pricing power of product features by mining consumer reviews. Management Science, 57(8), pp.1485–1509.
- Asur, S., Huberman, B.A., 2010. Predicting the future with social media. In 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Vol. 1, IEEE., pp.492–499.
- Bernatowicz, A., Małyszko, J., 2014. Recenzje konsumenckie w Internecie. Społeczny kontekst publikowania opinii i analiza spójności różnych sposobów ich wyrażania (Consumer Reviews on the Internet. The Social Context of Opinion Publishing and an Analysis of the Consistency of Different ways of Expressing them), In: D. Appenzeller (ed.), 2014. Matematyka i informatyka na usługach ekonomii: teoria i zastosowania (Mathematics and Computer Science at the Service of Economics: Theory and Applications). Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu (Published by the University of Economics in Poznań), pp.158–168.
- Bruhn, M., Hennig-Thurau, T., Hadwich, K., 2004. Markenführung und Relationship Marketing. In: Handbuch Markenführung. Gabler Verlag, Wiesbaden, pp.391–420.
- Chaney, P., 2020. 26 Business Review Sites Where Customers Rate You. Small Business TRENDS, [online] Available at:
https://smallbiz-trends.com/2020/12/business-review-sites.html [Access: 08.06.2021] - Chen, B., Zhu, L., Kifer, D., Lee, D., 2010. What is an Opinion About? Exploring Political Standpoints Using Opinion Scoring Model. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp.1007–1012.
https://dl.acm.org/doi/abs/10.5555/2898607.2898768 . - Chong, A.Y.L., Li, B., Ngai, E.W.T., Ch'ng, E., Lee, F., 2016. Predicting online product sales via online reviews, sentiments, and promotion strategies: A big data architecture and neural network approach. International Journal of Operations & Production Management. Vol. 36, No. 4, pp.358–383.
https://doi.org/10.1108/IJOPM-03-2015-0151 - Das, S., Chen, M., 2001. Yahoo! For Amazon: Extracting Market Sentiment from Stock Message Boards. In: Proceedings of the Asia Pacific Finance Association Annual Conference (APFA) Vol. 35, p.4–45.
- Dbohra, 2021. 15 Business Review Sites Where Customers Rate You, Branding, Business, [online] Available at:
https://dbohra.com/blog/index.php/2021/01/13/15-business-review-sites-customers-rate-you/ [Access:08.06.2021] - Directorate For Science, Technology And Innovation Committee On Consumer Policy, 2018. Understanding Online Consumer Ratings And Reviews, Organisation for Economic Co-operation and Development, pp.1–25. [online] Available at:
https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/CP(2018)21/FINAL&docLanguage=En [Access: 14.08.2021]. - Duan, W., Cao, Q., Yu, Y., Levy, S., 2013. Mining Online User-Generated Content: Using Sentiment Analysis Technique to Study Hotel Service Quality. In 2013 46th Hawaii International Conference on System Sciences (IEEE.), pp.3119–3128.
- Dzieciątko, M., 2018. Application of Text Analytics to Analyze Emotions in the Speeches. In International Conference on Information Technologies in Biomedicine, Springer, Cham, pp.525–536.
- Gimpel, K., Schneider, N., O’Connor, B., et al., 2010. Part-of-speech Tagging for Twitter: Annotation, Features, and Experiments. Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science.
- Gładysz, A., 2017. Analiza wydźwięku polskojęzycznych opinii konsumenckich: implementacja algorytmu tworzenia słownika wydźwięku. Overtone Analysis of Polish-language Consumer Opinions: Implementation of an Algorithm for Creating an Overtone Dictionary). Autobusy: technika, eksploatacja, systemy transportowe (Buses: technique, operation, transport systems), Vol. 12, p.1692–1697.
- Guta, M., 2017. 97% of Customers Read Online Reviews, Survey Says. Small Business Trends. [online] Available at:
https://smallbiz-trends.com/2017/11/2017-local-consumer-review-survey.html [Access: 02.08.2021] - Guttmann, A., 2017. Most Trusted Sources for Product Information in the U.S. in 2016, Advertising & Marketing, [online] Available at:
https://www.statista.com/statistics/251456/content-online-shoppers-trust-when-researching-products-in-the-us/ [Access 05.08.2021] - Jeyapriya, A., Selvi, C.K., 2015. Extracting Aspects and Mining Opinions in Product Reviews Using Supervised Learning Algorithm. Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS), IEEE, pp.548–552.
- Kantar Media, 2019. What Brand Information Sources Do People Trust the Most?. MarketingCharts. [online] Available at:
https://www.marketingcharts.com/brand-related-108281 [Access 05.08.2021]. - Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., Mora, H. 2020. A Framework for Big Data Analytics in Commercial Social Networks: A Case Study on Sentiment Analysis and Fake Review Detection for Marketing Decision-Making. Industrial Marketing Management, 90, pp.523–537.
- Liu, B. 2011. Opinion Mining and Sentiment Analysis. In: B. Liu (ed.), 2011. Web Data Mining. Springer, Berlin, Heidelberg, pp.459–526.
- Liu, B., 2015. Sentiment Analysis, Cambridge University Press, pp.259–301.
- Liu, Y., Huang, X., An, A., Yu, X. 2007. ARSA: A Sentiment-aware Model for Predicting Sales Performance Using Blogs. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 607–614.
- Małyszko, J., 2015. Automatyczne przetwarzanie recenzji konsumenckich dla oceny użyteczności produktów i usług (Automatic Processing of Consumer Reviews for Usability Evaluation of Products and Services). Rozprawa doktorska (PhD thesis), doctoral supervisor: Abramowicz, W., Poznań University of Economics and Business, p. 16–155.
- Mandel, A., 2018. Producent Doritos ujawnia – olej palmowy zniknie ze składu przekąsek (Doritos Manufacturer Reveals - Palm Oil Will Disappear from Snack Ingredients), Rzeczpospolita, [online] Available at:
https://www.rp.pl/Przemysl-spozywczy/180909587-Producent-Doritos-ujawnia--olej-palmowy-zniknie-ze-skladu-przekasek.html [Access: 14.10.2018]. - McGlohon, M., Glance, N., Reiter, Z., 2010. Star Quality: Aggregating Reviews to Rank Products and Merchants. Proceedings of Fourth international AAAI Conference on Weblogs and Social Media, pp.114–121.
- Młodzianowski, P., 2018. A Study of the Influence of Online Information on the Changes in the Warsaw Stock Exchange Indexes. Acta Universitatis Lodziensis, Vol. 335, No 3, pp.123–138.
- Nakayama, M., Wan, Y., 2019. The Cultural Impact on Social commerce: A Sentiment Analysis on Yelp Ethnic Restaurant Reviews. Information & Management, 56(2), pp. 271–279.
- Nasukawa, T., Yi, J., 2003. Sentiment Analysis: Capturing Favorability Using Natural Language Processing. In Proceedings of the 2nd international conference on Knowledge capture, pp. 70–77.
- Pang, B., Lee, L., Vaithyanathan, S., 2002. Thumbs up? Sentiment classification using machine learning techniques. arXiv:cs/0205070.
- Perkins, B., Fenech, C., 2016. The Deloitte Consumer Review The Growing Power of Consumers, A Deloitte Insight report, [online] Available at:
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/consumer-review-8-the-growing-power-of-consumers.pdf [Access: 11.08.2021] - Pozzi, F. A., Fersini, E., Messina, E., Liu, B., 2016. Sentiment Analysis in Social Networks. Morgan Kaufmann, p.18–21.
- Ravi, K., Ravi, V., 2015. A Survey on Opinion Mining and Sentiment Analysis: Tasks, Approaches and Applications. Knowledge based systems, 89, pp.14–46.
- Reviewtrackers, 2021. 19 Business Review Sites for Improving Your Brand Visibility. Reviewtrackers, [online] Available at:
https://www.reviewtrackers.com/guides/business-review-sites/ [Access: 08.06.2021] - Sadikov, E., Parameswaran, A., Venetis, P. 2009. Blogs as predictors of movie success. In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 3, No. 1.
- Taylor, K., 2018. Reklama piwa Heineken wycofana. Po oskarżeniach o rasizm (Heineken Beer ad Withdrawn. After Accusations of Racism), BUSINESS INSIDER, [online] Available at:
https://businessinsider.com.pl/media/reklama/heineken-wycofal-reklame-po-oskrazeniach-o-rasizm/38l6prn [Access: 14.10.2018] - Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I., 2010. Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. In Proceedings of the International AAAI Conference on Web and Social Media, Vol. 4, No. 1.
- Qazi, A., Tamjidyamcholo, A., Raj, R.G., Hardaker, G., Standing, C., 2017. Assessing Consumers’ Satisfaction and Expectations through Online Opinions: Expectation and Disconfirmation Approach. Computers in Human Behavior, 75, pp.450–460.
