Have a personal or library account? Click to login
Comparison of ascorbic acid metabolism during the development of two jujube varieties Cover

Comparison of ascorbic acid metabolism during the development of two jujube varieties

Open Access
|Dec 2025

References

  1. Alos, E., Rey, F., Gil, J. V., Rodrigo, M. J., and Zacarias, L. (2021). Ascorbic acid content and transcriptional profiling of genes involved in its metabolism during development of petals, leaves, and fruits of orange (Citrus sinensis cv. Valencia Late). Plants (Basel, Switzerland), 10, 2590, https://doi.org/10.3390/plants10122590.
  2. Alos, E., Rodrigo, M. J., and Zacarias, L. (2013). Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of L-ascorbic acid in pepper fruits (Capsicum annuum L.). Plant Science: An International Journal of Experimental Plant Biology, 207, 2–11, https://doi.org/10.1016/j.plantsci.2013.02.007.
  3. Alos, E., Rodrigo, M. J., and Zacarias, L. (2014). Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta, 239, 1113–1128, https://doi.org/10.1007/s00425-014-2044-z.
  4. An, H. M., Fan, W. G., Chen, L. G., Asghar, S., and Liu, Q. L. (2007). Molecular characterisation and expression of L-galactono-1,4-lactone dehydrogenase and L-ascorbic acid accumulation during fruit development in Rosa roxburghii. The Journal of Horticultural Science and Biotechnology, 82, 627–635, https://doi.org/10.1080/14620316.2007.11512283.
  5. Aragueez, I., Cruz-Rus, E., Angel Botella, M., Medina-Escobar, N., and Valpuesta, V. (2013). Proteomic analysis of strawberry achenes reveals active synthesis and recycling of L-ascorbic acid. Journal of Proteomics, 83, 160–179, https://doi.org/10.1016/j.jprot.2013.03.016.
  6. Badejo, A. A., Jeong, S. T., Goto-Yamamoto, N., and Esaka, M. (2007). Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiology and Biochemistry, 45, 665–672, https://doi.org/10.1016/j.plaphy.2007.07.003.
  7. Bulley, S., Wright, M., Rommens, C., Yan, H., Rassam, M., Lin, W. K., Andre, C., Brewster, D., Karunairetnam, S., Allan, A. C., and Laing, W. A. (2012). Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnology Journal, 10, 390–397, https://doi.org/10.1111/j.1467-7652.2011.00668.x.
  8. Chen, Y. Y. (2015). Synthesis and metabolism of L-ascorbic acid in Chinese jujube and wild jujube. Dissertation, Hebei Agricultural University, China.
  9. Cruz-Rus, E., Botella, M. A., Valpuesta, V., and Gomez-Jimenez, M. C. (2010). Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. Journal of Plant Physiology, 167, 739–748, https://doi.org/10.1016/j.jplph.2009.12.017.
  10. De Pinto, M. C., Francis, D., and De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209, 90–97, https://doi.org/10.1007/BF01415704.
  11. Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., and Smirnoff, N. (2007). Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. The Plant Journal: for Cell and Molecular Biology, 52, 673–689, https://doi.org/10.1111/j.1365-313X.2007.03266.x.
  12. Duan, M., Ma, N. N., Li, D., Deng, Y. S., Kong, F. Y., Lv, W., and Meng, Q. W. (2012). Antisense-mediated superession of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiology and Biochemistry, 58, 37–45, https://doi.org/10.1016/j.plaphy.2012.06.007.
  13. Eltelib, H. A., Badejo, A. A., Fujikawa, Y., and Esaka, M. (2011). Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). Journal of Plant Physiology, 168, 619–627, https://doi.org/10.1016/j.jplph.2010.09.003
  14. Esaka, M., Hattori, T., Fujisawa, K., Sakajo, S., and Asahi, T. (1990). Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. European Journal of Biochemistry, 191, 537–541, https://doi.org/10.1111/j.1432-1033.1990.tb19154.x.
  15. Fang, T., Zhen, Q. L., Liao, L., Owiti, A., Zhao, L., Korban, S. S., and Han, Y. P. (2017). Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chemistry, 225, 132–137, https://doi.org/10.1016/j.foodchem.2017.01.014.
  16. Gatzek, S., Wheeler, G. L., and Smirnoff, N. (2002). Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. The Plant Journal: for Cell and Molecular Biology, 30, 541–553, https://doi.org/10.1046/j.1365-313X.2002.01315.x.
  17. Huang, M., Xu, Q., and Deng, X. X. (2014). L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). Journal of Plant Physiology, 171, 1205–1216, https://doi.org/10.1016/j.jplph.2014.03.010.
  18. Imai, T., Ban, Y., Terakami, S., Yamamoto, T., and Moriguchi, T. (2009). L-Ascorbate biosynthesis in peach: Cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Physiologia Plantarum, 136, 139–149, https://doi.org/10.1111/j.1399-3054.2009.01213.x.
  19. Ioannidi, E., Kalamaki, M. S., Engineer, C., Pateraki, I., Alexandrou, D., Mellidou, I., Giovannonni, J., and Kanellis, A. K. (2009). Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. Journal of Experimental Botany, 60, 663–678, https://doi.org/10.1093/jxb/ern322.
  20. Ishikawa, T., Dowdle, J., and Smirnoff, N. (2007). Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiologia Plantarum, 129, 831–831.
  21. Laing, W. A., Wright, M. A., Cooney, J., and Bulley, S. M. (2007). The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America, 104, 9534–9539, https://doi.org/10.1073/pnas.0701625104.
  22. Lehninger, A. L., and Ul Hassan, M. (1956). Enzymatic formation of ascorbic acid in rat liver extracts. The Journal of Biological Chemistry, 223, 38–123.
  23. Liang, D., Zhu, T. T., Ni, Z. Y., Lin, L. J., Tang, Y., Wang, Z. H., Wang, X., Wang, J., Lv, X. L., and Xia, H. (2017). Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS ONE, 12, 16, https://doi.org/10.1371/journal.pone.0172818.
  24. Li, L. L., Lu, M., and An, H. M. (2017). Expression profiles of the genes involved in L-ascorbic acid biosynthesis and recycling in Rosa roxburghii leaves of various ages. Acta Physiologiae Plantarum, 39, 44, https://doi.org/10.1007/s11738-016-2346-9.
  25. Li, M. J., Ma, F. W., Guo, C. M., and Liu, J. (2010a). Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiology and Biochemistry, 48, 216–224, https://doi.org/10.1016/j.plaphy.2010.01.015.
  26. Li, M. J., Ma, F. W., Liang, D., Li, J., and Wang, Y. L. (2010b). Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS ONE, 5, e14281, https://doi.org/10.1371/journal.pone.0014281.
  27. Linster, C. L., and Clarke, S. G. (2008). L-Ascorbate biosynthesis in higher plants: The role of VTC2. Trends in Plant Science, 13, 567–573, https://doi.org/10.1016/j.tplants.2008.08.005.
  28. Linster, C. L., Gomez, T. A., Christensen, K. C., Adler, L. N., Young, B. D., Brenner, C., and Clarke, S. G. (2007). Arabidopsis VTC2 encodes a GDP-L-Galactose phosphorylase, the last unknown enzyme in the Smirnoff-wheeler pathway to ascorbic acid in plants. The Journal of Biological Chemistry, 282, 18879–18885, https://doi.org/10.1074/jbc.M702094200.
  29. Lin, Y. X., Zhao, B., Tang, H. L., Cheng, L. J., Zhang, Y. T., Wang, Y., Fan, J. M., Li, M. Y., Chen, Q., Luo, Y., Wang, X. R., Tang, H. R., and Zhang, Y. (2022). L-ascorbic acid metabolism in two contrasting hardy kiwifruit (Actinidia arguta) cultivars during fruit development. Scientia Horticulturae, 297, 110940, https://doi.org/10.1016/j.scienta.2022.110940.
  30. Liu, F. H., Wang, L., Gu, L., Zhao, W., Su, H. Y., and Cheng, X. H. (2015). Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chemistry, 188, 399–405, https://doi.org/10.1016/j.foodchem.2015.05.036.
  31. Liu, M. J., Zhao, J., Cai, Q. L., Liu, G. C., Wang, J. R., Zhao, Z. H., Liu, P., Dai, L., Yan, G., Wang, W. J., Li, X. S., Chen, Y., Sun, Y. D., Liu, Z. G., Lin, M. J., Xiao, J., Chen, Y. Y., Li, X. F., Wu, B., Ma, Y., Jian, J. B., Yang, W., Yuan, Z., Sun, X. C., Wei, Y. L., Yu, L. L., Zhang, C., Liao, S. G., He, R. J., Guang, X. M., Wang, Z., Zhang, Y. Y., and Luo, L. H. (2014). The complex jujube genome provides insights into fruit tree biology. Nature Communnications, 5, 63– 69, https://doi.org/10.1038/ncomms6315.
  32. Lu, D. Y., Wu, Y., Pan, Q. H., Zhang, Y. P., Qi, Y. Y., and Bao, W. H. (2022). Identification of key genes controlling L-ascorbic acid during jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science, 13, 950103, https://doi.org/10.3389/fpls.2022.950103.
  33. Sanmartin, M., Pateraki, I., Chatzopoulou, F., and Kanellis, A. K. (2007). Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta, 225, 873–885, https://doi.org/10.1007/s00425-006-0399-5.
  34. Stevens, R., Page, D., Gouble, B., Garchery, C., Zamir, D., and Causse, M. (2008). Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell & Environment, 31, 1086–1096, https://doi.org/10.1111/j.1365-3040.2008.01824.x.
  35. Wang, L. Y., Gao, H., and Bo, C. J. (2019). Mechanism of ascorbic acid synthesis during jujube development. Journal of Dezhou University, 35, 98–102 (in Chinese).
  36. Wheeler, G. L., Jones, M. A., and Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393, 365–369, https://doi.org/10.1038/30728.
  37. Yan, X. Q., Zhang, X., Lu, M., He, Y., and An, H. M. (2015). De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene, 561, 54–62, https://doi.org/10.1016/j.gene.2015.02.054.
  38. Zhang, C. M., Huang, J., and Li, X. G. (2016). Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujuba Mill. Frontiers in Plant Science, 7, 122, https://doi.org/10.3389/fpls.2016.00122.
DOI: https://doi.org/10.2478/fhort-2025-0014 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 181 - 195
Submitted on: Mar 9, 2025
Accepted on: Jul 10, 2025
Published on: Dec 5, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Yong Huang, Guoying Song, Yang Wang, Kun Zhang, Jiayun Zhou, Zhenchao Yuan, Qunxian Deng, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.