Have a personal or library account? Click to login
Friend or Foe: Exploring the impact of UV-B irradiation in seedling stage and its subsequent effects on growth, quality and yield of lettuce plants Cover

Friend or Foe: Exploring the impact of UV-B irradiation in seedling stage and its subsequent effects on growth, quality and yield of lettuce plants

By: Ayse Onur,  Yasin Topcu and  Ersin Polat  
Open Access
|Aug 2025

References

  1. Ali, A., Santoro, P., Mori, J., Ferrante, A., and Cocetta, G. (2023). Effect of UV-B elicitation on spearmint’s (Mentha spicata L.) morpho-physiological traits and secondary metabolites production. Plant Growth Regulation, 104, 63–76, https://doi.org/10.1007/s10725-023-01028-7.
  2. Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18(2), 1379–1394, https://doi.org/10.5194/acp-18-1379-2018.
  3. Chen, Y., Li, T., Yang, Q., Zhang, Y., Zou, J., Bian, Z., and Wen, X. (2019). UVA radiation is beneficial for yield and quality of indoor cultivated lettuce. Frontiers in Plant Science, 10, 1563, https://doi.org/10.3389/fpls.2019.01563.
  4. Desta, B., and Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1, https://doi.org/10.1186/s40538-020-00199-z.
  5. Dogan, A., Topcu, Y., and Erkan, M. (2018). UV-C illumination maintains postharvest quality of minimally processed broccoli florets under modified atmosphere packaging. Acta Horticulturae, 1194, 537–544, https://doi.org/10.17660/ActaHortic.2018.1194.78.
  6. D’orazio, J., Jarrett, S., Amaro-Ortiz, A., and Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248, https://doi.org/10.3390/ijms140612222.
  7. Ebrahimi, M., Souri, M. K., Mousavi, A., and Sahebani, N. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8, 19, https://doi.org/10.1186/s40538-021-00216-9.
  8. Escobar-Bravo, R., Klinkhamer, P. G. L., and Leiss, K. A. (2017). Interactive effects of uv-b light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Frontiers in Plant Science, 8, 278, https://doi.org/10.3389/fpls.2017.00278.
  9. Fina, J., Casadevall, R., Abdelgawad, H., Prinsen, E., Markakis, M. N., Beemster, G. T. S., and Casati, P. (2017). UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiology, 174(2), 1110–1126, https://doi.org/10.1104/pp.17.00365.
  10. Flores, M., Amorós, A., and Escalona, V. H. (2023). Changes in agronomic, antioxidant compounds, and morphology parameters of green and red lettuces (Lactuca sativa L.) by successive harvests and UV-B supplementation. Horticulturae, 9(6), 677, https://doi.org/10.3390/horticulturae9060677.
  11. Gao, W., Zheng, Y., Slusser, J. R., Heisler, G. M., Grant, R. H., Xu, J., and He, D. (2004). Effects of suplementary ultraviolet-B irradiance on maize yield and qualities: A field experiment. Photochemistry and Photobiology, 80(1), 127–131, https://doi.org/10.1111/j.1751-1097.2004.tb00060.x.
  12. Herndon, J. M., Hoisington, R. D., and Whiteside, M. (2018). Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. Journal of Geography, Environment and Earth Science International, 14(2), 1–11, https://doi.org/10.9734/JGEESI/2018/40245.
  13. Hong, J., Xu, F., Chen, G., Huang, X., Wang, S., Du, L., and Ding, G. (2022). Evaluation of the effects of nitrogen, phosphorus, and potassium applications on the growth, yield, and quality of lettuce (Lactuca sativa L.). Agronomy, 12(10), 2477, https://doi.org/10.3390/agronomy12102477.
  14. Hoque, M. M., Ajwa, H., Othman, M., Smith, R., and Cahn, M. (2010). Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience, 45(10), 1539– 1544, https://doi.org/10.21273/hortsci.45.10.1539.
  15. Hu, Z., Li, H., Chen, S., and Yang, Y. (2013). Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica, 51(1), 151–157, https://doi.org/10.1007/s11099-013-0007-4.
  16. Jacobo-Velázquez, D. A., Moreira-Rodríguez, M., and Benavides, J. (2022). UVA and UVB radiation as innovative tools to biofortify horticultural crops with nutraceuticals. Horticulturae, 8(5), 387, https://doi.org/10.3390/horticulturae8050387.
  17. Jadidi, M., Mumivand, H., Nia, A. E., Shayganfar, A., and Maggi, F. (2023). UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biology, 23, 555, https://doi.org/10.1186/s12870-023-04556-6.
  18. Janisiewicz, W. J., Takeda, F., Glenn, D. M., Camp, M. J., and Jurick, W. M. (2016). Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology, 106(4), 386–394, https://doi.org/10.1094/phyto-09-15-0240-r.
  19. Jansen, M. A. K. (2002). Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiologia Plantarum, 116(3), 423–429, https://doi.org/10.1034/j.1399-3054.2002.1160319.x.
  20. Kakani, V. G., Reddy, K. R., Zhao, D., and Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: A review. Agricultural and Forest Meteorology, 120(1–4), 191–218, https://doi.org/10.1016/j.agrformet.2003.08.015.
  21. Khan, S. R., Sharma, B., Chawla, P. A., and Bhatia, R. (2022). Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis. Food Analytical Methods, 15, 666–688, https://doi.org/10.1007/s12161-021-02148-4.
  22. Lee, M., Rivard, C., Pliakoni, E., Wang, W., and Rajashekar, C. B. (2021). Supplemental UV-A and UV-B affect the nutritional quality of lettuce and tomato: Health-promoting phytochemicals and essential nutrients. American Journal of Plant Sciences, 12(1), 104–126, https://doi.org/10.4236/ajps.2021.121007.
  23. León-Chan, R. G., López-Meyer, M., Osuna-Enciso, T., Sañudo-Barajas, J. A., Heredia, J. B., and León-Félix, J. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environmental and Experimental Botany, 139, 143–151, https://doi.org/10.1016/j.envexpbot.2017.05.006.
  24. Liang, Q., Strahan, S. E., and Fleming, E. L. (2017). Concerns for ozone recovery. Science, 358(6368), 1257–1258, https://doi.org/10.1126/science.aaq0145
  25. Liu, B., Liu, X. B., Li, Y. S., and Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158–163, https://doi.org/10.1016/j.fcr.2013.08.006.
  26. Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M., Ribeiro, C., Dias, M. C., and Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777–784, https://doi.org/10.1016/j.scienta.2018.11.058.
  27. Mathur, S., Bheemanahalli, R., Jumaa, S. H., Kakar, N., Reddy, V. R., Gao, W., and Reddy, K. R. (2024). Impact of ultraviolet-B radiation on early-season morpho-physiological traits of indica and japonica rice genotypes. Frontiers in Plant Science, 15, 1369397, https://doi.org/10.3389/fpls.2024.1369397.
  28. Othman, A. J., Eliseeva, L. G., Ibragimova, N. A., Zelenkov, V. N., Latushkin, V. V., and Nicheva, D. V. (2021) Dataset on the effect of foliar application of different concentrations of silicon dioxide and organosilicon compounds on the growth and biochemical contents of oak leaf lettuce (Lactuca sativa var. crispa) grown in phytotron conditions. Data in Brief, 38, 107328, https://doi.org/10.1016/j.dib.2021.107328.
  29. Oyarburo, N. S., Machinandiarena, M. F., Feldman, M. L., Daleo, G. R., Andreu, A. B., and Olivieri, F. P. (2015). Potassium phosphite increases tolerance to UV-B in potato. Plant Physiology and Biochemistry, 88, 1–8, https://doi.org/10.1016/j.plaphy.2015.01.003.
  30. Qi, W., Ma, J., Zhang, J., Gui, M., Li, J., and Zhang, L. (2020). Effects of low doses of UV-B radiation supplementation on tuber quality in purple potato (Solanum tuberosum L.). Plant Signaling & Behavior, 15(9), e1783490, https://doi.org/10.1080/15592324.2020.1783490.
  31. Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845–872, https://doi.org/10.1007/s00344-015-9541-6.
  32. Roro, A. G., Dukker, S. A. F., Melby, T. I., Solhaug, K. A., Torre, S., and Olsen, J. E. (2017). UV-B-induced inhibition of stem elongation and leaf expansion in pea depends on modulation of gibberellin metabolism and intact gibberellin signalling. Journal of Plant Growth Regulation, 36, 680–690, https://doi.org/10.1007/s00344-017-9671-0.
  33. SAS INSTITUTE INC. (2017). Using JMP® version 13.2.0 (pp. 1989–2019). Cary, NC, USA: SAS Institute Inc.
  34. Senapati, P. K., Kariali, E., Kisan, K., Sahu, B. B., Naik, A. K. D., Panda, D., Tripathy, S. K., Mohapatra, S., and Mohapatra, P. K. (2024). Comprehensive studies reveal physiological and genetic diversity in traditional rice cultivars for UV-B sensitivity. Scientific Reports, 14, 13137, https://doi.org/10.1038/s41598-024-64134-0.
  35. Silveira Gomez, A. C., Rivera Marchant, L., and Escalona Contreras, V. H. (2023). The response of hydroponic baby lettuce to UV-B radiation exposure during the growing period. Advances in Horticultural Science, 37(3), 295–305, https://doi.org/10.36253/ahsc-13849.
  36. Singh, P., and Choudhary, K. K. (2025). UV-B orchestration of growth, yield and grain quality traits highlights modifications of source-to-sink relationship in pearl millet cultivars. Physiologia Plantarum, 177(2), e70141, https://doi.org/10.1111/ppl.70141.
  37. Skowron, E., Trojak, M., and Pacak, I. (2024). Effects of UV-B and UV-C spectrum supplementation on the antioxidant properties and photosynthetic activity of lettuce cultivars. International Journal of Molecular Sciences, 25(17), 9298, https://doi.org/10.3390/ijms25179298.
  38. Son, S. W. (2023). Stratospheric ozone loss by very short-lived substances. Nature Climate Change, 13, 509– 510, https://doi.org/10.1038/s41558-023-01687-4.
  39. Souri, M. K., and Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67–78, https://doi.org/10.1080/01904167.2018.1549671.
  40. Topcu, Y., Dogan, A., Kasimoglu, Z., Sahin-Nadeem, H., Polat, E., and Erkan, M. (2015). The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry, 93, 56–65, https://doi.org/10.1016/j.plaphy.2015.02.016.
  41. Topcu, Y., Dogan, A., Sahin-Nadeem, H., Polat, E., Kasimoglu, Z., and Erkan, M. (2018). Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination. Agriculture, Ecosystems and Environment, 259, 1–10, https://doi.org/10.1016/j.agee.2018.02.027.
  42. Vandenbussche, F., Yu, N., Li, W., Vanhaelewyn, L., Hamshou, M., Van Der Straeten, D., and Smagghe, G. (2018). An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Science, 268, 54– 63, https://doi.org/10.1016/j.plantsci.2017.12.005.
  43. Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., and Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The plant-microorganism context. Frontiers in Plant Science, 11, 597642, https://doi.org/10.3389/fpls.2020.597642.
  44. Wargent, J. J., Elfadly, E. M., Moore, J. P., and Paul, N. D. (2011). Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34(8), 1401–1413, https://doi.org/10.1111/j.1365-3040.2011.02342.x.
  45. Wu, X., Chen, B., Xiao, J., and Guo, H. (2023). Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period. Frontiers in Plant Science, 14, 1101172, https://doi.org/10.3389/fpls.2023.1101172.
  46. Xie, F., Xia, Y., Feng, W., and Niu, Y. (2023). Increasing surface UV radiation in the tropics and northern mid-latitudes due to ozone depletion after 2010. Advances in Atmospheric Sciences, 40, 1833–1843, https://doi.org/10.1007/s00376-023-2354-9.
  47. Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S. K., and Datta, S. (2020). Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology, 62(9), 1270–1292, https://doi.org/10.1111/jipb.12932.
  48. Yao, X., Chu, J., He, X., and Si, C. (2014). Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. Journal of Cereal Science, 60(1), 31–36, https://doi.org/10.1016/j.jcs.2014.01.012.
  49. Yoon, M. Y., Kim, M. Y., Shim, S., Kim, K. D., HA, J., Shin, J. H., Kang, S., and Lee, S. H. (2016). Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling. Frontiers in Plant Science, 7, 1917, https://doi.org/10.3389/fpls.2016.01917.
  50. Yuan, L., Ming, Y., and Xunling, W. (1998). Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Research, 57(3), 253–263, https://doi.org/10.1016/S0378-4290(97)00138-X.
  51. Zhang, R., Huang, G., Wang, L., Zhou, Q., and Huang, X. (2019). Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicology and Environmental Safety, 171, 683–690, https://doi.org/10.1016/j.ecoenv.2019.01.035.
  52. Zhang, K., Li, W., Ju, Y., Wang, X., Sun, X., Fang, Y., and Chen, K. (2021). Transcriptomic and metabolomic basis of short- and long-term post-harvest UV-C application in regulating grape berry quality development. Foods, 10(3), 625, https://doi.org/10.3390/foods10030625.
DOI: https://doi.org/10.2478/fhort-2025-0012 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 159 - 173
Submitted on: Mar 17, 2025
Accepted on: Jun 24, 2025
Published on: Aug 16, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ayse Onur, Yasin Topcu, Ersin Polat, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.