Have a personal or library account? Click to login

Pomological, biochemical and bioactive characteristics in fruits of quince cultivars grown in Türkiye

Open Access
|Aug 2025

References

  1. Abdollahi, H. (2019). A review on history, domestication and germplasm collections of quince (Cydonia oblonga Mill.) in the world. Genetic Resources and Crop Evolution, 66, 1041–1058, https://doi.org/10.1007/s10722-019-00769-7.
  2. Al-Snafi, A. E. (2016). The medical importance of Cydonia oblonga – A review. IOSR Journal of Pharmacy, 6(6), 87–99.
  3. Al-Zughbi, I., and Krayem, M. (2022). Quince fruit Cydonia oblonga Mill nutritional composition, antioxidative properties, health benefits and consumers preferences towards some industrial quince products: A review. Food Chemistry, 393, 133362, https://doi.org/10.1016/j.foodchem.2022.133362.
  4. Ashraf, M. U., Muhammad, G., Hussain, M. A., and Bukhari, S. N. (2016). Cydonia oblonga M., a medicinal plant rich in phytonutrients for pharmaceuticals. Frontiers in Pharmacology, 21(7), 163, https://doi.org/10.3389/fphar.2016.00163.
  5. Berktas, S., and Cam, M. (2025). Effects of acid, alkaline and enzymatic extraction methods on functional, structural and antioxidant properties of dietary fiber fractions from quince (Cydonia oblonga Miller). Food Chemistry, 464(Pt 1), 141596, https://doi.org/10.1016/j.foodchem.2024.141596.
  6. Blanda, G., Rodriguez-Roque, M. J., Comandini, P., Flores Cordova, M. A., Salas-Salazar, N. A., Cruz-Alvarez, O., and Soto-Caballero, M. C. (2020). Phenolic profile and physicochemical characterization of quince (Cydonia oblonga Mill.) fruits at different maturity index. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2306–2315, https://doi.org/10.15835/48412108.
  7. Bozan, B., Başer, K. H. C., and Kara, S. (1997). Quantitative determination of naphthaquinones of Arnebia densiflora (Nordm.) Ledeb. by an improved high-performance liquid chromatographic method. Journal of Chromatography A, 782(1), 133–136, https://doi.org/10.1016/S0021-9673(97)00460-3.
  8. Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30, https://doi.org/10.1016/S0023-6438(95)80008-5.
  9. Cankurt, K., and İpek, M. (2023). The effects of some organic compounds on yield and fruit quality in Albion strawberry (Fragaria × ananassa Duch) cultivar. Selcuk Journal of Agriculture and Food Sciences, 37(1), 19–24, https://doi.org/10.15316/SJAFS.2023.003.
  10. Carvalho, M., Silva, B. M., Silva, R., Valentão, P., Andrade, P. B., and Bastos, M. L. (2010). First report on Cydonia oblonga Miller anticancer potential: Differential antiproliferative effect against human kidney and colon cancer cells. Journal of Agricultural and Food Chemistry, 58, 3366–3370, https://doi.org/10.1021/jf903836k.
  11. Crisosto, C. H. (1997). Developing maturity indices for full red plum cultivars. California Tree Fruit Agreement, 454, 34–48.
  12. Davey, M. W., Montagu, M. V., Inzé, D., Sanmartin, M., Kanellis, A. K., Smirnoff, N., Benzie, I. J. J., Strain, J. J., Favell, D., and Fletcher, J. (2000). Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability, and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860, http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<;825::AID-JSFA598>3.0.CO;2-6.
  13. Devirgiliis, C., Guberti, E., Mistura, L., and Raffo, A. (2024). Effect of fruit and vegetable consumption on human health: An update of the literature. Foods, 13(19), 3149, https://doi.org/10.3390/foods13193149.
  14. Dimitriu, L., Preda, D., Constantinescu-Aruxandei, D., and Oancea, F. (2023). Quince pomace: A source of fiber products and polyphenols. Chemistry Proceedings, 13(1), 6, https://doi.org/10.3390/chemproc2023013006.
  15. Dogan, H., Ercisli, S., Temim, E., Hadziabulic, A., Tosun, M., Yilmaz, S. O., and Zia-Ul-Haq, M. (2014). Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus de L’Academie Bulgare des Sciences, 67, 1593–1600.
  16. Ercisli, S., Boydas, M. G., Kalkan, F., Ozturk, I., and Kara, M. (2015). Dimensional, frictional, and color properties of four quince cultivars (Cydonia oblonga Miller). Erwerbs-Obstbau, 57, 113–118, https://doi.org/10.1007/s10341-015-0235-9.
  17. Ercisli, S., Guleryuz, M., and Esitken, A. (2009). A study on the fruit properties of native quince cultivars in Oltu. ANADOLU Journal of Aegean Agricultural Research Institute, 9(2), 32–40.
  18. Ercisli, S., Orhan, E., Esitken, A., Yildirim, N., and Agar, G. (2008). Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genetic Resources and Crop Evolution, 55, 613–618, https://doi.org/10.1007/s10722-007-9266-x.
  19. Fao. (2023). FAOSTAT: Global production of quince fruits. Retrieved from FAO website, 24 October 2024.
  20. Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C. I. G., Angioni, A., Dessi, S., Marzouki, N., and Cabras, P. (2007). Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. Journal of Agricultural and Food Chemistry, 55(3), 963–969, https://doi.org/10.1021/jf062614e.
  21. Göksel, Z. (2024). Comparison of physicochemical and bioactive contents of 36 different quince cultivars and genotypes. Genetic Resources and Crop Evolution, 71, 4499–4518, https://doi.org/10.1007/s10722-024-01866-y.
  22. İlhan, G. (2023). Morphological, biochemical and health promoting properties in seed propagated quince fruits found in Çoruh Valley in Türkiye. International Journal of Agriculture, Environment and Food Sciences, 7(3), 718–724, https://doi.org/10.31015/jaefs.2023.3.25.
  23. İmrak, B., Golcu, A. E., Comlekcioglu, S., Bozhuyuk, M. R., Mlcek, J., Ozkan, G., and Skrovankova, S. (2024). Quality characteristics of the cv. Albion strawberry (Fragaria × ananassa Duch.) in different locations. Turkish Journal of Agriculture and Forestry, 48(5), 720–730, https://doi.org/10.55730/1300-011X.3214.
  24. Khoubnasabjafari, M., and Jouyban, A. (2011). A review of phytochemistry and bioactivity of quince (Cydonia oblonga Mill.). Journal of Medicinal Plants Research, 5(16), 3577–3594.
  25. Kostecka-Gugała, A. (2024). Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as medicinal fruits of the Rosaceae family: Current state of knowledge on properties and use. Antioxidants, 13(1), 71, https://doi.org/10.3390/antiox13010071.
  26. Leonel, M., Leonel, S., Tecchio, M. A., Mischan, M. M., Moura, M. F., and Xavier, D. (2016). Characteristics of quince fruits cultivars’ (Cydonia oblonga Mill.) grown in Brazil. Australian Journal of Crop Science, 10(5), 711–716, https://doi.org/10.21475/ajcs.2016.10.05.p7425.
  27. Liang, J., Ren, Y., Wang, Y., Han, M., Yue, T., Wang, Z., and Gao, Z. (2021). Physicochemical, nutritional, and bioactive properties of pulp and peel from 15 kiwifruit cultivars. Food Bioscience, 42, 101157, https://doi.org/10.1016/j.fbio.2021.101157.
  28. Mir, S. A., Wani, S. M., Wani, T. A., Ahmad, M., Gani, A., Masoodi, F. A., and Nazir, A. (2016). Comparative evaluation of the proximate composition and antioxidant properties of processed products of quince (Cydonia oblonga). International Food Research Journal, 23, 816–821.
  29. Najman, K., Adrian, S., Sadowska, A., Świąder, K., Hallmann, E., Buczak, K., Waszkiewicz-Robak, B., and Szterk, A. (2023). Changes in physicochemical and bioactive properties of quince (Cydonia oblonga Mill.) and its products. Molecules, 28(7), 3066, https://doi.org/10.3390/molecules28073066.
  30. Ňorbová, M., Vollmannová, A., Fedorková, S., Musilová, J., and Lidiková, J. (2024). The forgotten fruit (Cydonia oblonga Mill.) and its chemical composition: A review. European Food Research and Technology, 250, 2093–2102, https://doi.org/10.1007/s00217-024-04543-7.
  31. Ozturk, A., Faizi, Z. A., and Kurt, T. (2022). Performance of some standard quince cultivars under ecological conditions of Bafra, Samsun. Yuzuncu Yil University Journal of Agricultural Sciences, 32(2), 320–330, https://doi.org/10.29133/yyutbd.1058908.
  32. Rasheed, M., Hussain, I., Rafiq, S., Hayat, I., Qayyum, A., Ishaq, S., and Awan, M. S. (2018). Chemical composition and antioxidant activity of quince fruit pulp collected from different locations. International Journal of Food Properties, 21(1), 2320–2327, https://doi.org/10.1080/10942912.2018.1514631.
  33. Rezagholi, F., Hashemi, S. M. B., Gholamhosseinpour, A., Sherahi, M. H., Hesarinejad, M. A., and Ale, M. T. (2019). Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. Journal of the Science of Food and Agriculture, 99, 143–151, https://doi.org/10.1002/jsfa.9155.
  34. Rop, O., Balík, J., Řezníček, V., Juríková, T., Škardová, P., Salaš, P., Sochor, J., Mlček, J., and Kramářová, D. (2011). Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech Journal of Food Sciences, 29, 65–73, https://doi.org/10.17221/212/2009-CJFS.
  35. Scalzo, J., Politi, A., Pellegrini, N., Mezzetti, B., and Battino, M. (2005). Plant genotype affects total antioxidant capacity and phenolic content in fruit. Nutrition, 21(2), 207–213, https://doi.org/10.1016/j.nut.2004.03.025.
  36. Sharma, R., Joshi, V. K., and Rana, J. C. (2011). Nutritional composition and processed products of quince (Cydonia oblonga Mill.). Indian Journal of Natural Products and Resources, 2(3), 354–357.
  37. Silva, B. M., Andrade, P. B., Ferreres, F., Domingues, A., Seabra, R. M., and Ferreira, M. A. (2002). Phenolic profile of quince fruit (Cydonia oblonga Miller) (pulp and peel). Journal of Agricultural and Food Chemistry, 50(16), 4615–4618, https://doi.org/10.1021/jf0203139.
  38. Spanos, G. A., and Wrolstad, R. E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38, 1565–1571, https://doi.org/10.1021/jf00097a030.
  39. Tok, M.S. (2020). Phenological, morphological and pomological studies on in quince genotypes grown in Bolu and its surroundings. Master’s Thesis. Bolu Abant İzzet Baysal University. Graduate School of Natural and Applied Sciences, Department of Horticulture, Bolu, Türkiye, 68 p. (in Turkish).
  40. TUIK (2022). Turkish Statistical Institute: Quince production in Turkey. Retrieved from TUIK website, 23 February 2022.
  41. Wojdyło, A., Teleszko, M., and Oszmiański, J. (2014). Antioxidant property and storage stability of quince juice phenolic compounds. Food Chemistry, 152, 261–270, https://doi.org/10.1016/j.foodchem.2013.11.124.
DOI: https://doi.org/10.2478/fhort-2025-0011 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 127 - 137
Submitted on: Dec 11, 2024
Accepted on: Jun 23, 2025
Published on: Aug 11, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Burhanettin Imrak, Nesibe Ebru Kafkas, Ayşegül Esra Gölcü, Sezai Ercisli, Samina Yasmin, Melekber Sulusoglu Durul, Sona Skrovankova, Jiri Mlcek, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.