References
- Ali, M. B., Howard, S., Chen, S., Wang, Y., Yu, O., Kovacs, L. G., and Qiu, W. (2011). Berry shin development in Norton grape: Distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biology, 11(1), 7, https://doi.org/10.1186/1471-2229-11-7.
- Aly, M. S., El-Shahat, A. Z. N., Naguib, N. Y., Ahl, H. A. S., Zakaria, A. M., and Dahab, M. A. A. (2015). Effect of nitrogen and/or bio-fertilizer on the yield, total flavonoids, carbohydrate contents, essential oil quantity and constituents of dill plants. Middle East Journal Agriculture Research, 4(2), 291–296.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254, https://doi.org/10.1016/0003-2697(76)90527-3.
- Cao, X. Y., Xu, F. L., Wang, W. L., Wang, J., Huang, S. H., and Zhang, X. H. (2012). Responses of Scutellaria baicalensis Georgi yield and root baicalin content to the fertilization rates of nitrogen, phosphorus, and potassium. Chinese Journal of Applied Ecology, 23(8), 2171–2177.
- Chakrabarti, N., and Mukherji, S. (2003). Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biologia Plantarum, 46, 589–594, https://doi.org/10.1023/A:1024827931134.
- Chen, S. M., Li, Z. W., Zhang, L. X., Wei, Y. Q., Zhu, Z. W., ZHANG, H. W., XU, Z. C., HUANG, W. X., and Shao, H. F. (2020). Research advances on the role of selenium in plants resistance to stress. Review of China Agricultural Science and Technology, 22(3), 6–13, https://doi.org/10.13304/j.nykjdb.2019.0084.
- Chen, Y., Wang, Q., Yang, C. Y., Chen, X., and Wang, X. L. (2023). Transcriptome responses of photosynthesis and hormone signals in tall fescue to low nitrogen stress. Chinese Journal of Grassland, 45(2), 26–34, https://doi.org/10.16742/j.zgcdxb.20220184.
- Clegg, K. M. (1956). The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture, 7(1), 40–44, https://doi.org/10.1002/jsfa.2740070108.
- Douglas, C. J. (1996). Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees. Trends in Plant Science, 1(6), 171–178, https://doi.org/10.1016/1360-1385(96)10019-4.
- El-badri, A. M., Hashem, A. M., Batool, M., Sherif, A., Nishawy, E., Ayaad, M., Hassan, H. M., Elrewainy, I. M., Wang, J., and Kuai, J. (2022). Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morphophysiochemical attributes under normal and salt stress conditions, besides selenium detoxifcation pathways in Brassica napus L. Journal of Nanobiotechnology, 20, 163. https://doi.org/10.1186/s12951-022-01370-4.
- El-Hendawy, S., Al-Suhaibani, N., Hassan, W., Tahir, M., and Schmidhalter, U. (2017). Hyperspectral reflectance sensing to assess the growth and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region. Plos One, 12(8), e0183262, https://doi.org/10.1371/journal.pone.0183262.
- Fan, M. S., Shen, J. B., Yuan, L. X., Jiang, R. F., Chen, X. P., Davies, W. J., and Zhang, F. (2012). Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 63, 13–24, https://doi.org/10.1093/jxb/err248.
- Fan, Y., Li, W. J., Cheng, N., Chen, P., Zhou, F., QI, M. X., Wu, H., Zhao, J. B., And, Liang, D. L. (2024). Selenium biofortification effect of different exogenous selenium on tomatoes. Journal of Northwest A & F University, 52(3), 105–112, https://doi.org/10.13207/j.cnki.jnwafu.2024.03.011.
- Gao, F., Dai, Z. H., Han, D., Wang, Z. S., Feng, R. W., Xiong, S. L., and Tu, S. X. (2017). Effects and mecHanisms of selenium on antioxidant system in plants. Current Biotechnology, 7(5), 467–472, https://doi.org/10.19586/j.2095-2341.2017.0080.
- Harbron, S., Foyer, C., and Walker, D. (1981). The purification and properties of sucrose-phosphate synthetase from spinach leaves: The involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Archives of Biochemistry and Biophysics, 212(1), 237–246, https://doi.org/10.1016/0003-9861(81)90363-5.
- Hasanuzzaman, M., Nahar, K., García-Caparrós, P., Parvin, K., Zulfiqar, F., Ahmed, N., and Fujita, M. (2022). Selenium supplementation and crop plant tolerance to metal/metalloid toxicity. Frontiers in Plant Science, 12, 792770, https://doi.org/10.3389/fpls.2021.792770.
- Heldt, H. W., and Piechulla, B. (2011). Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components. Plant Biochemistry, 4, 431–449, https://doi.org/10.1016/B978-0-12-384986-1.00018-1.
- Hu, H., Hu, J., Wang, Q., Xiang, M., and ZHang, Y. (2022). Transcriptome analysis revealed accumulation-assimilation of selenium and physiobiochemical cHanges in alfalfa (Medicago sativa L.) leaves. Journal of the Science of Food and Agriculture, 102, 4577–4588, https://doi.org/10.1002/jsfa.11816.
- Huber, S. C. (1983). Role of sucrose-phosphate synthase in partitioning of carbon in leaves. Plant Physiology, 71(4), 818–821, https://doi.org/10.1104/pp.71.4.818.
- Jing, D. W., Du, Z. Y., Ma, H. L., Ma, B. Y., Liu, F. C., Song, Y. G., Xu, Y. F., and Li, L. (2017). Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Scientia Horticulturae, 225, 1–5, https://doi.org/10.1016/j.scienta.2017.06.036.
- Landi, M., Tattini, M., and Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119, 4–17, https://doi.org/10.1016/j.envexpbot.2015.05.012.
- LI, L., TIAN, M. J., Gao, Y. M., AND LI, J. S. (2020). Effect of selenium fertilizer on growth and mineral element accumulation of tomato in substrate culture. Acta Agriculturae Zhejiangensis, 32(2), 253–261.
- Liu, B. G., and Zhu, Y. Y. (2007). Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. Journal of Food Engineering, 78(2), 584–587, https://doi.org/10.1016/j.jfoodeng.2005.11.001.
- Liu, L. X., Shen, F. F., Lu, H. Q., Han, Q. D., and Liu, Y. G. (2005). Research advance on sucrose phosphate synthase in sucrose metabolism. Molecular Plant Breeding, 3(2), 275–281.
- Liu, T., Gao, H., Xie, W., ZHang, X., Chen, N., Mei, X., Xing, J., Xu, Z., and ZHang, Z. (2021). Dynamic transcriptome analysis of rice response to nitrogen treatment at tillering stage. Acta Agriculturae Boreali-Sinica, 36(1), 44–53.
- Liu, W. L., ZHanG, J., Jiao, C., Yin, X. R., Fei, Z. J., Wu, Q. B., and Chen, K. S. (2019). Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research, 6, 49, https://doi.org/10.1038/s41438-019-0131-9.
- Lopes, G., Ávila, F. W., and Guilherme, L. R. G. (2017). Selenium behavior in the soil environment and its implication for human health. Ciênciae Agrotecnologia, 41(6), 605–615, https://doi.org/10.1590/1413-70542017416000517.
- Luo, J., Zhou, J., Li, H., Shi, W. G., Polle, A., Lu, M. Z., Sun, X. M., and Luo, Z. B. (2015). Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 35(12), 1283–1302, https://doi.org/10.1093/treephys/tpv091.
- Luo, Y., Wei, Y., Sun, S., Wang, J., Wang, W., Han, D., Shao, H. F., Jia, H. F., and Fu, Y. P. (2019). Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. International Journal of Molecular Sciences, 20, 3772, https://doi.org/10.3390/ijms20153772.
- Lynch, J. P. (2011). Root phenes for enHanced soil exploration and phosphorous acquisition: Tools for future crops. Plant Physiology, 156, 1041–1049, https://doi.org/10.1104/pp.111.175414.
- Mokhele, B., ZHan, X. J., Yang, G. Z., and ZHang, X. L. (2012). Nitrogen assimilation in crop plants and its affecting factors. Canadian Journal of Plant Science, 92(3), 399–405, https://doi.org/10.4141/CJPS2011-135.
- Pei, Y. C., Siemann, E., Tian, B., and Ding, J. (2020). Root flavonoids are related to enHanced AMF colonization of an invasive tree. AoB Plants, 12, laa002, https://doi.org/10.1093/aobpla/plaa002.
- Peng, F. T., Jiang, Y. M., Gu, M. R., and Shu, H. R. (2003). Advances in research on nitrogen nutrition of deciduous fruit crops. Journal of Fruit Science, 20(1), 54–58.
- Peng, Q., Li, Z., Liang, D. L., Wang, M. K., and Guo, L. (2017). Dynamic differences of uptake and translocation of exogenous selenium by different crop sand its mecHanism. Enviromental Science, 38(4), 1667–1674, https://doi.org/10.13227/j.hjkx.201607205.
- Peng, Z. Q., Zhang, X., Mou, M., Xie, Y. M., Zhou, L., Cui, Y., and SHan, C. H. (2013). Research on the range standards of selenium content in selenium rich foods. Studies of Trace Elements and Health, 30(1), 41–43.
- Qiao, Y., Meng, X. J., Jin, X. X., and Ding, G. H. (2013). Genes expression of key enzymes in phenylpropanes metabolism pathway in cucumber with RT-PCR. Advanced Materials Research, 746, 53–57, https://doi.org/10.4028/www.scientific.net/AMR.746.53.
- Rayman, M. P. (2008). Food-chain selenium and human health: Emphasis on intake. British Journal of Nutrition, 100(2), 254–268, https://doi.org/10.1017/S0007114508939830.
- Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588–590, https://doi.org/10.1126/science.179.4073.588.
- Shahid, M. A., Balal, R. M., Khan, N., Zotarelli, L., and Garcia-Sarkhosh, F. (2019). Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicology and Environmental Safety, 180, 588–599, https://doi.org/10.1016/j.ecoenv.2019.05.037.
- Shi, M. Z., and Xie, D. Y. (2014). Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology, 8, 47–60, https://doi.org/10.2174/1872208307666131218123538.
- Shu, S. H., Chen, B., Zhou, M. C., Zhao, X. M., Xia, H. Y., and Wang, M. (2013). De novo sequencing andtranscriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids. PloS ONE, 8(8), e71350, https://doi.org/10.1371/journal.pone.0071350.
- Song, F., Hu, J. H., Liang, W. L., Liang, W. Y., and Wang, L. X. (2023). Differential expression analysis of genes related to phenylpropane metabolism in Lycium barbarum under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 43(8), 1286–1294, https://doi.org/10.7606/j.issn.1000-4025.2023.08.1286.
- Sun, F. Y., Yang, L., LI, L., Yuan, L. X., YIN, X. B., Yang, G., and Li, T. (2017). Progress on selenium biofortification of wheat. Current Biotechnology, 7(5), 433–438.
- Suthumchai, W., Matsui, T., Kawada, K., Kosugi, Y., and Fujimura, K. (2007). Seasonal fluctuations of sucrose metabolizing enzymes activities and sugar contents in lettuce (Lactuca sativa L.). Journal of Biological Sciences, 7(5), 752–760, https://doi.org/10.3923/jbs.2007.752.758.
- Tan, H., Man, C., Xie, Y., Yan, J., Chu, J., and Huang, J. (2019). A crucial role of GA-regulated flavonol biosynthesis in root growth of Arabidopsis. Molecule Plant, 12, 521–537, https://doi.org/10.1016/j.molp.2018.12.021.
- Tran, T. A. T., Zhou, F., Yang, W., Wang, M., Dinh, Q. T., Wang, D., and Liang, D. (2018). Detoxification of mercury in soil by selenite and related mecHanisms. Ecotoxicology and Environmental Safety, 159, 77–84, https://doi.org/10.1016/j.ecoenv.2018.04.029.
- Trippe, R. C., and Pilon-Smits, E. (2021). Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. Journal of Hazardous Materials, 404, 124178, https://doi.org/10.1016/j.jhazmat.2020.124178.
- Ulhassan, Z., Gill, R. A., Huang, H., Ali, S., Mwamba, T. M., Ali, B., Huang, Q., Hamid, Y., Khan, A. R., Wang, J., and Zhou, W. J. (2019). Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiology and Biochemistry, 145, 142–152, https://doi.org/10.1016/j.plaphy.2019.10.035.
- Vallini, G., Simona, Regorio, S. D., and Lampis, S. (2005). Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 60(3–4), 349–356, https://doi.org/10.1515/znc-2005-3-419.
- Vizzolo, G., Pinton, R., Varanmin, Z., and Costa, G. (1996). Sucrose accumulation in developing peach fruit. Physiologia Plantarum, 96(2), 225–230, https://doi.org/10.1111/j.1399-3054.1996.tb00206.x.
- Wang, D. D., Huang, Y., Zhou, Z. Z., LI, T. T., Wu, F. M., and Yao, Q. Y. (2021a). Effects of selenate at different concentrations on growth and physiological indexes of tea tree. Guihaia, 41(2), 183–194, https://doi.org/10.11931/guihaia.gxzw202004001.
- Wang, K., Bao, L., Su, L., Tan, F. M., Meng, L. Y., and Zhang, N. M. (2021b). The effect of exogenous selenium supplementation in soil on the absorption, transportation, and accumulation of selenium in rapeseed. Jiangsu Agricultural Sciences, 49(13), 79–84, https://doi.org/10.15889/j.issn.1002-1302.2021.13.015.
- Wang, N. N., Zhu, J. X., Wang, S. F., and Zhu, L. J. (2000). The effect of matrine on sucrose biosynthesis in wheat flag leaves. Acta Scientiarum Naturalium Universitatis Nankaiensis, 33(1), 19–22.
- Wang, Y. C., Zhao, T. Y., CHang, S. M., Li, S. H., Pang, X. J., Zheng, L. L., and Kang, Y. F. (2019). Effect of nano-selenium spraying on the growth characteristics, nutritional quality, phenolic content and antioxidant activity of mung beans sprouts. Journal of China Agricultural University, 24(5), 39–46, https://doi.org/10.11841/j.issn.1007-4333.2019.05.05.
- Xu, K., Zhao, D. Y., Yuan, J. C., Yan, S., Zhang, S. Y., and Hou, G. X. (2019). Effects of spraying foliar selenium fertilizer on fruit characters of pears. Northern Horticulture, 22, 35–40, https://doi.org/10.11937/bfyy.20190947.
- Yang, Y., Dan, X., Wu, D. D., Wu, Y. Y., Guan, J. X., and Yu, H. (2019). Effects of different selenium-rich treatments on the quality of ‘Yeniang 2’ berries and its wine. Sino-Overseas Grapevine & Wine, 2, 66–70, https://doi.org/10.13414/j.cnki.zwpp.2019.02.014.
- Yemm, E. W., and Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal, 57(3), 508–514, https://doi.org/10.1042/bj0570508.
- Yeou, B. K., Woo, T. P., Ramaraj, S., Seon, K. Y., Gong, I. L., Jong, S. P., and Sang, U. P. (2021). Phenylalanine ammonia-lyase expression and pyranocoumarin accumulation in angelica gigas plantlets exposed to light-emitting diodes. Journal of Phytology, 2021(13), 79–84, https://doi.org/10.25081/jp.2021.v13.7018.
- Zhang, F. S., Cui, Z. L., Chen, X. P., Ju, X. T., Shen, J. B., Chen, Q., Liu, X. J., Zhang, W. F., Mi, G. H., Fan, M. S., and Jiang, R. F. (2012). Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 116, l–40, https://doi.org/10.1016/B978-0-12-394277-7.00001-4.
- Zhang, W., Dou, Z., He, P., Ju, X., Powlson, D., Chadwick, D., Norse, D., Lu, Y., Zhang, Y., Wu, L., Chen, X., Cassman, K. C., and Zhang, F. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. PNAS, 110, 8375–8380, https://doi.org/10.1073/pnas.1210447110.
- Zhao, L., Jiang, Y. M., Peng, F. T., Zhang, X., Fang, X. J., and Li, H. B. (2009). Studies on utilization and accumulation dynamics of spring soil 15 N-urea application in apple orchard. Acta Horticulturae Sinica, 36(12), 1805–1809, https://doi.org/10.16420/j.issn.0513-353x.2009.12.015.