Have a personal or library account? Click to login
Seed germination, seedling growth performance, genetic stability and biochemical responses of papaya (Carica papaya L.) upon pre-sowing seed treatments Cover

Seed germination, seedling growth performance, genetic stability and biochemical responses of papaya (Carica papaya L.) upon pre-sowing seed treatments

Open Access
|Mar 2025

References

  1. Ahmad, F., Kamal, A., Singh, A., Ashfague, F., Alamri, S., Siddiqui, M. H., and Khan, M. I. R. (2021). Seed priming with gibberellic acid induces high salinity tolerance in (Pisum sativum L.) through antioxidants, secondary metabolites and up-regulation of antiporter genes. Plant Biology, 23, 113–121, https://doi.org/10.1111/plb.13187
  2. Akbar, F., Yousaf, N., Rabbani, A., Shinwari, K., and Masood, S. (2012). Study of total seed proteins pattern of sesame (Sesamum indicum L.) landraces via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Botanical Society of Pakistan, 44, 2009–2014. Retrieved from https://www.researchgate.net/publication/281654386
  3. Al-Akhras, M. A. H., Al-Quraan, N. A., Abu-Aloush, Z. A., Mousa, M. S., Alzoubi, T., Makhadmeh, G. N., Donmez, O., and Al Jarrah, K. (2024). Impact of magnetized water on seed germination and seedling growth of wheat and barley. Results Engineering, 22, 101991, https://doi.org/10.1016/J.RINENG.2024.101991
  4. Ali, A., Devarajan, S., Waly, M., Essa, M. M., and Rahman, M. S. (2011). Nutritional and medicinal value of papaya (Carica papaya L.). In M. M. Essa, A. Manickavasagan and E. Sukumar (Eds.), Natural Products and Bioactive Compounds in Disease Prevention (pp. 34–42). New York, NY, USA: Nova Science Publisher.
  5. Al-Shrouf, M. (2014). The effect of magnetic treatment of irrigation water on cucumber production and water productivity. Acta Horticulturae, 1054, 111–118, https://doi.org/10.17660/ACTAHORTIC.2014.1054.12
  6. Anju, M., Sanskriti, G., Suresh, B., and Nidhi, S. (2015). In vitro accumulation of cadmium chloride in papaya seedling and its impact on plant protein. International Journal of Ayurveda and Pharma Research, 2, 54–62, Retrieved from https://ijaprs.com/index.php/ijapr/article/view/243.
  7. Ansari, O., Azadi, S., Sharif-Zadeh, F., and Younesi, E. (2013). Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. Journal of Stress Physiology & Biochemistry, 9(3), 61–71. Retrieved from https://cyberleninka.ru/article/n/effect-of-hormone-priming-on-germination-characteristics-and-enzyme-activity-of-mountain-rye-secale-montanum-seeds-under-drought-stress/viewer
  8. Arif, A. B., Yuliani, S., Hernani, Q., Agustinisar, I., and Winarti, C. (2023). Effects of chitosan nanoparticles coating on delaying of seed soybean (Gycine max) deterioration. Emirates Journal of Food and Agriculture, 3, 232–241, https://doi.org/10.9755/ejfa.2023.v35.i3.2982
  9. Asgharipour, R., and Omrani, R. (2011). Effects of seed pretreatment by stationary magnetic fields on germination and early growth of lentil. Australian Journal of Basic and Applied Sciences, 5, 1650–1654. Retrieved from https://www.researchgate.net/publication/289786314
  10. Balouchi, H., Seyed, A., and Mahdavi, B. (2007). Electromagnetic field influence on annual medics, barley, dodder and barnyard grass seed germination. Pakistan Journal of Biological Sciences, 1, 1–6. Retrieved from https://www.researchgate.net/publication/261446135
  11. Bates, S., Waldren, P., and Teare, D. (1973). Rapid determination of free Proline for water-stress studies. Plant and Soil, 39, 205–207, https://doi.org/10.1007/BF00018060
  12. Bhardwaj, J., Anand, A., and Nagarajan, S. (2012). Biochemical and biophysical changes associated with magneto priming in germinating cucumber seeds. Plant Physiology and Biochemistry, 57, 67–73, https://doi.org/10.1016/j.plaphy.2012.05.008
  13. Bhattacharya, J., and Khuspe, S. S. (2001). In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Scientia Horticulturae, 91, 39–49, https://doi.org/10.1016/S0304-4238(01)00237-0
  14. Boamah, P. O., Onumah, J., Adujuba, W. O., and Santo, K. G. (2023). Application of depolymerized chitosan in crop production: A review. International Journal of Biological Macromolecules, 235, 123858, https://doi.org/10.1016/J.IJBIOMAC.2023.123858
  15. Boshra, V., and Tajul, Y. (2013). Papaya-an innovative raw material for food and pharmaceutical processing industry. Journal of Environmental and Occupational Health, 4(1), 68–75. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dfbf80fcef7fcf55d655573bbe7a37e7fb26fdba
  16. Chadha, K. L. (1992). Scenario of papaya production and utilization in India. Indian Journal of Horticulture, 49(2), 97–119. Retrieved from https://www.indianjournals.com/ijor.aspx?target=ijor:ijh&volume=49&issue=2&article=001&type=pdf
  17. Chang, C., Yang, H., Wen, M., and Chern, C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 3, https://doi.org/10.38212/2224-6614.2748
  18. Desai, A., Trivedi, A., Panchal, B., and Desai, V. (2017). Improvement of papaya seed germination by different growth regulator and growing media under net house condition. International Journal of Current Microbiology and Applied Sciences, 6(9), 828–834, https://doi.org/10.20546/ijcmas.2017.609.102
  19. Dilip, W., Singh, D., Moharana, D., Rout, S., and Patra, S. (2017). Influence of gibberellic acid (GA3) on seed germination and seedling growth of Kagzi Lime. Journal of Agricultural Science, 1, 62–69, https://doi.org/10.25081/jsa.2017.v1.888
  20. Dinesh, A., and Padmapriya, S. (2022). Effect of different pre-sowing treatments on seed germination, seed coat morphology and survival of guava (Psidium guajava L.). Journal of Pharmacognosy and Phytochemistry, 11(3), 265–269. Retrieved from https://www.phytojournal.com/archives/2022.v11.i3.14431/effect-of-different-p
  21. Dissaanayake, P., George, L., and Gupta, L. (2010). Effect of light, gibberellic acid and abscisic acid on germination of guayule (Parthenium argentatum Gray) seed. Industrial Crops and Products, 32, 111–117, https://doi.org/10.1016/J.INDCROP.2010.03.012
  22. Dobráanszki, J., and Teixeira Da Silva, J. A. (2014). Impact of magnetic water on plant growth. Environmental and Experimental Biology, 12, 137–142. Retrieved from https://www.researchgate.net/publication/284724980_Impact_of_magnetic_water_o
  23. Du, G., Zhang, H., Yang, Y., Zhao, Y., Tang, K., and Liu, F. (2022). Effects of gibberellin pre-treatment on seed germination and seedling physiology characteristics in industrial hemp under drought stress condition. Life, 12(11), 1907, https://doi.org/10.3390/LIFE12111907
  24. Ebrahimzadeh, A., Nabavi, F., and Nabavi, M. (2009). Antioxidant activities of methanol extract of (Sambucus ebulus L.) flower. Pakistan Journal of Biological Sciences, 12, 447–450, https://doi.org/10.3923/PJBS.2009.447.450
  25. Edelstein, M., Ben, Y., Wodner, M., and Kigel, J. (1995). Role of endogenous gibberellins in germination of melon (Cucumis melo). Seed Physiology, 95, 113–119, https://doi.org/10.1111/J.1399-3054.1995.TB00816.X
  26. Elbeshehy, E. K. F., and Almaghrabi, O. A. (2013). Effect of weak electro-magnetic treatments on seedling growth and protein properties of different wheat (Triticum aestivum L.) cultivars. Journal of Biotechnology Science, 1(1), 1–13. Retrieved from https://www.academia.edu/8262774/Effect_ of_Weak_Electro_Magnetic_treatments_on_ Seedling_Growth_and_Protein_properties_of_ some_Different_Wheat_Triticum_aestivum_L_Cultivars
  27. El-Sayed, S., and Eata, M. (2017). The effect of irrigating by magnetized water, proline and yeast extract spraying on quality and productivity of tomato crop under salt stress conditions. The Egyptian Journal of Agricultural Engineering, 34, 2327–2354, https://doi.org/10.21608/MJAE.2017.97520
  28. El-Yazied, A., El-Gizawy, M., Khalf, M., El-Satar, A., and Shalaby, A. (2012). Effect of magnetic field treatments for seeds and irrigation water as well as N, P and K levels on productivity of tomato plants. Journal of Applied Sciences Research, 8(4), 2088–2099. Retrieved from https://www.aensiweb. com/old/jasr/jasr/2012/2088-2099.pdf
  29. Fayez, A. (2000). Action of photosynthetic diuron herbicide on cell organelles and biochemical constituents of the leaves of two soybean cultivars. Pesticide Biochemistry and Physiology, 66, 105–115, https://doi.org/10.1006/PEST.1999.2459
  30. Fayez, K., Radwan, D. E., Mohamed, A. K., and Abdel-Rahmana, A.-R. M. (2013). Alteration in protein contents and polypeptides of peanut plants due to herbicides and salicylic acid treatments. Journal of Environmental Studies, 11, 27–36, https://doi.org/10.21608/JESJ.2013.192105
  31. Finch-Savage, W. E., and Leubener-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523, https://doi.org/10.1111/j.1469-8137.2006.01787.x
  32. Flòrez, M., Carbonell, V., and Martinez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59, 68–75, https://doi.org/10.1016/J.ENVEXPBOT.2005.10.006
  33. Godínez-Garrido, N. A., Torres-Castillo, J. A., Ramírez-Pimentel, J. G., Covarrubias-Prieto, J., Cervantes-Ortiz, F., and Aguirre-Mancilla, C. L. (2022). Effects on germination and plantlet development of sesame (Sesamum indicum L.) and bean (Phaseolus vulgaris L.) seeds with chitosan coatings. Agronomy, 12(3), 666, https://doi.org/10.3390/agronomy12030666
  34. Guo, H., Lyv, Y., Zheng, W., Yang, C., Li, Y., Wang, X., Chen, R., Wang, C., Luo, J., and Qu, L. (2021). Comparative metabolomics reveals two metabolic modules affecting seed germination in rice (Oryza sativa). Metabolites, 11, 880, https://doi.org/10.3390/METABO11120880
  35. Gupta, K., and Corpas, J. (2022). Hormones and plant response. Cham: Springer.
  36. Hammer, A., David, A., and Paul, D. (2001). PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9. Retrieved from https://www. researchgate.net/publication/259640226
  37. Hartmann, H. T., Kester, D. E., Davies, F. T. Jr., Geneve, R. L., and Davies, F. T. Jr. (2014). Principles of propagation from seeds. In H. T. Hartmann, D. E. Kester and R. L. Geneve (Eds.), Hartmann & Kester’s Plant Propagation Principles and Practices (pp. 211–261). Harlow, UK: Pearson Education Limited.
  38. Hayee, S. A., Rizwan, S., Sajjad, A., Jabeen, U., Bashir, F., Mushtaq, A., Behli, F., Anjum, S., Ismail, T., and Hafeez, I. (2020). Seed storage protein electrophoretic profile among popular cultivars of date palm (Phoenix dactylifera L.). Bangladesh Journal of Botany, 49(4), 1063–1069, https://doi.org/10.3329/bjb.v49i4.52540
  39. Heikal, M. M., Shaddad, M. A., and Ahmed, A. M. (1982). Effect of water stress and gibberellic acid on germination of flax, sesame and onion seeds. Biologia Plantarum, 24, 124–129, https://doi.org/10.1007/BF02902858
  40. Hong, G., Su, X., Xu, K., Liu, B., Wang, G., Li, J., Wang, R., Zhu, M., and Li, G. (2022). Salt stress downregulates 2-hydroxybutyrylation in Arabidopsis siliques. Journal of Proteomics, 250, 104383, https://doi.org/10.1016/J.JPROT.2021.104383
  41. Hooley, R., Beale, H., Smith, J., and Macmillan, J. (1990). Novel affinity probes for gibberellin receptors in aleurone protoplasts of Avena fatua. In R. P. Pharis and S. B. Rood (Eds.), Plant growth substances 1988 (pp. 145–153). Berlin, Heidelberg: Springer, https://doi.org/10.1007/978-3-642-74545-4_17
  42. Hossain, F., Islam, N., Ali, S., Kayes, A., and Choudhury, S. (2023). GA3 and growing medium influence papaya seed germination and seedling growth. Trends in Horticulture, 6(2), 3263, https://doi.org/10.24294/th.v6i2.3263
  43. Hossain, Z., Mustafa, G., and Komatsu, S. (2015). Plant responses to nanoparticle stress. International Journal of Molecular Sciences, 16, 26644–26653, https://doi.org/10.3390/IJMS161125980
  44. Hozayn, M., and Abdul Qados, A. (2010). Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agriculture and Biology Journal of North America, 1(4), 677–682. Retrieved from https://scihub.org/ABJNA/PDF/2010/4/1-4-677-682.pdf
  45. Hozayn, M., El-Mahdy, A. A. A., and Abdel-Rahman, H. M. H. (2015). Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research, 10(8), 849–857, https://doi.org/10.5897/AJAR2014.9383
  46. Hozayn, M., El-Monem, A., Elwia, E., and El-Shatar, M. (2014). Future of magnetic agriculture in arid and semi-arid regions (case study. Scientific Papers, Series A, Agronomy, 57, 197–204. Retrieved from https://www.researchgate.net/publication/279205423
  47. Hu, Z., Weijian, L., Yali, F., and Huiquan, L. (2018). Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Scientia Horticulturae, 237, 184–191, https://doi.org/10.1016/j.scienta.2018.04.018
  48. Hussain, M., and Abo Al-Saoud, A. (2024). Magnetized water as an ecofriendly irrigation alternative ameliorates cytogenetic impairments in Vicia faba under two fertilizers. Egyptian Journal of Genetics and Cytology, 53(2), 125–154. Retrieved from https://www.researchgate.net/publication/383621489
  49. Ismail, W. H., Mutwali, E. M., Salih, E. A., and Tay Elmoula, E. T. (2020). Effect of Magnetized water on seed germination, growth and yield of rocket plant (Eruca sativa Mill). International Journal of Agriculture & Environmental Science, 7, 34–38, https://doi.org/10.14445/23942568/IJAES-V7I2P110
  50. Jones, L., and Carbonell, J. (1984). Regulation of the synthesis of barley aleurone α-amylase by gibberellic acid and calcium ions. Plant Physiology, 76, 213–218, https://doi.org/10.1104/PP.76.1.213
  51. Kaneko, M., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., and Matsuoka, M. (2002). The α-Amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiology, 128, 1264–1270, https://doi.org/10.1104/PP.010785
  52. Karssen, M., Zagorski, S., Kepczynski, J., and Groot, C. (1989). Key role for endogenous gibberellins in the control of seed germination. Annals of Botany, 63, 71–80, https://doi.org/10.1093/OXFORDJOURNALS.AOB.A087730
  53. Kaur, H., Nazir, F., Hussain, S. J., Kaur, R., Rajurkarr, A. B., Kumari, S., Siddiqui, M. H., Mahajan, M., Khatoon, S., and Khan, M. I. R. (2023). Gibberellic acid alleviates cadmium-induced seed germination inhibition through modulation of carbohydrate metabolism and antioxidant capacity in mung bean seedlings. Sustainability, 15(4), 3790, https://doi.org/10.3390/su15043790
  54. Kitts, D., Wijewickreme, N., and Hu, C. (2000). Antioxidant properties of a North American ginseng extract. Molecular and Cellular Biochemistry, 203, 1–10, https://doi.org/10.1023/A:1007078414639
  55. Krivorotova, T., and Sereikaite, J. (2014). Determination of fructan exohydrolase activity in the crude extracts of plants. Electronic Journal of Biotechnology, 17, 329–333, https://doi.org/10.1016/J.EJBT.2014.09.005
  56. Kronenberg, J. (1985). Experimental evidence for effects of magnetic fields on moving water. IEEE Transaction on Magnetics, 21(5), 2059–2061, https://doi.org/10.1109/TMAG.1985.1064019
  57. Laemmli, U. (1970). Cleavage of structural proteins assembly of the heat of bacteriophage T4. Nature, 227(5259), 680–685, https://doi.org/10.1038/227680a0
  58. Lange, M. P., and Lange, T. (2006). Gibberellin biosynthesis and the regulation of plant development. Plant Biology, 8(3), 281–290, https://doi.org/10.1055/s-2006-923882
  59. Lanjhiyana, R., Sahu, G. D., Panigrahi, H. K., and Katiyar, P. (2020). Role of pre-sowing seed treatment on germination behavior and seedling vigour of papaya (Carica papaya L.). Journal of Pharmacognosy and Phytochemistry, 9(5), 3039–3042, https://doi.org/10.22271/phyto.2020.v9.i5ap.12803
  60. Lin, Y., and Tang, Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101, 140–147, https://doi.org/10.1016/J.FOODCHEM.2006.01.014
  61. Lizárraga-Paulín, E. G., Torres-Pacheco, I., Moreno-Martínez, E., and Miranda-Castro, S. P. (2011). Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. African Journal of Biotechnology, 10(34), 6439–6446. Retrieved from https://www.ajol.info/index.php/ajb/article/view/94630
  62. Mahesh, C., Swapnil, N., Amol, S., and Pooja, C. (2023). Studies on effect of different concentration of gibberellic acid (GA3) on seed germination and protein profile in mung bean (Vigna radiata) under saline condition (NaCl). Mysore Journal of Agricultural Sciences, 57(3), 131–138. Retrieved from https://www.researchgate.net/publication/386371751
  63. Mahmoud, F., and Abd El-Fatah, S. (2020). Genetic Diversity studies and identification of molecular and biochemical markers associated with Fusarium wilt resistance in cultivated faba bean (Vicia faba). Journal of Plant Pathology, 36(1), 11–28, https://doi.org/10.5423/PPJ.OA.04.2019.0119
  64. Megbowon, I. (2020). Protein profile study of Sarotherodon melanotheron from South-West Nigerian water bodies. Nigerian Agricultural Journal, 51(2), 521–525. Retrieved from https://www.ajol.info/index.php/naj/article/view/199927
  65. Miceli, A., Moncada, A., Sabatino, L., and Vetrano, F. (2019). Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy, 9(7), 382, https://doi.org/10.3390/agronomy9070382
  66. Miller, G. L. (1959). Use of dinitrosalicylic acid for determining reducing sugars. Analytical Chemistry, 31(3), 426–428, https://doi.org/10.1021/ac60147a030
  67. Mohamed, M., Zaki, M., El-Bagoury, H., and Younis, A. (2018). Biological changes occurred in soybean seed during exposing to several types of seed priming. Arab Universities Journal of Agricultural Sciences, 26(2C), 1841–1856, https://doi.org/10.21608/AJS.2018.31654
  68. Mohammed, A. (2023). Effect of gibberellic acid on germination and seedling growth of soybean (Glycine max L. Merrill). Revis Bionatura, 8(2), 41, https://doi.org/10.21931/RB/2023.08.02.41
  69. Mohammed, L., Nasr, M., Abdossi, V., and Naderi, D. (2021). Genetic diversity and biochemical analysis of Capsicum annuum (bell pepper) in response to root and basal rot disease; Phytophthora capsici. Phytochemistry, 190, 112884, https://doi.org/10.1016/j.phytochem.2021.112884
  70. Moradkhani, S., and Jabbari, H. (2023). The effects of foliar spray of chitosan nanoparticles on tomato resistance against of Cuscuta Campestris Yunck. The Open Medicinal Chemistry Journal, 17, e187410452301310, https://doi.org/10.2174/18741045-v17-230223-2022-7
  71. Namba, K., Sasao, A., and Shibusawa, S. (1995). Effect of magnetic field on germination and plant growth. Acta Horticulture, 399, 143–148, https://doi.org/10.17660/ACTAHORTIC.1995.399.15
  72. Osman, S. A., Salama, D. M., Abd El-Aziz, M. E., Shabaan, E. A., and Abd Elwahed, M. S. (2020). The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). Plant Physiology and Biochemistry, 151, 77–87, https://doi.org/10.1016/J.PLAPHY.2020.03.009
  73. Pardhe, D. D. (2021). Comparative seed storage profiling of selected species of the genus Vigna. International Journal Biological Innovations, 3(1), 162–172, https://doi.org/10.46505/ijbi.2021.3116
  74. Pardo, P., Lòpez-Sànchez, J. F., and Rauret, G. (2003). Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Analytical and Bioanalytical Chemistry, 376, 248–254, https://doi.org/10.1007/s00216-003-1897-y
  75. Paul, A. K., Mukherji, S., and Sircar, S. M. (1970). Enzyme activities in germinating Mungbean (Phaseolus aureus) seeds and their relation with promoter and inhibitors of protein synthesis. Österreichische Botanische Zeitschrift, 118, 311–320, https://doi.org/10.1007/BF01377599
  76. Peng, J., and Harberd, N. P. (2002). The role of GA-mediated signaling in the control of seed germination. Current Opinion in Plant Biology, 5(5), 376–381, https://doi.org/10.1016/S1369-5266(02)00279-0
  77. Pereira, T., Gomes De Almeida, P. S., Gonc Alves De Azevedo, I., Da Cunha, M., Gonc Alves De Oliveira, J., Gomes Da Silva, M., and Vargas, H. (2009). Gas diffusion in ‘Golden’ papaya fruit at different maturity stages. Postharvest Biology and Technology, 54(3), 123–130, https://doi.org/10.1016/j.postharvbio.2009.07.010
  78. Pinnamaneni, R. (2017). Nutritional and medicinal value of papaya (Carica papaya Linn.). World Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 2559–2578, https://doi.org/10.20959/wjpps20178-9947
  79. Powell, A. A. (2009). What is seed quality and how to measure it. Paper presented at the Second World Seed Conference, FAO Headquarters, Rome, 142–149.
  80. Priatni, S., Harimadi, K., Buana, E., Kosasih, W., and Rohmatussolihat, R. (2020). Production and characterization of spray-dried swamp eel (Monopterus albus) protein hydrolysate prepared by papain. Sains Malaysiana, 49(3), 545–552, https://doi.org/10.17576/jsm-2020-4903-09
  81. Rácuciu, M., Creangá, D., and Horga, I. (2008). Plant growth under static magnetic field influence. Romanian Reports in Physics, 53(1–2), 353–359. Retrieved from https://www.researchgate.net/publication/228824131
  82. Ramteke, V., Paithankar, D. H., Kamatyanatti, M., Baghel, M. M., Chauhan, J., and Kurrey, V. (2015). Seed germination and seedling growth of papaya as influenced by GA3 and propagation media. International Journal of Farm Sciences, 5(3), 74–81. Retrieved from https://www.researchgate.net/publication/303785042
  83. Rana, G., Deb, P., Dowarah, B., and Sushmitha, K. (2020). Effect of seed pre treatment on seed germination and seedling growth of papaya. International Journal of Current Microbiology and Applied Sciences, 9(4), 1066–1071, https://doi.org/10.20546/ijcmas.2020.904.126
  84. Reddy, K. V., Reshma, S. R., Jareena, S., and Nagaraju, M. (2012). Exposure of greengram seeds (Vigna radiate var. radiata) to static magnetic fields: Effects on germination and α-amylase activity. Journal of Seed Science, 5(3), 106–114, https://doi.org/10.3923/rjss.2012.106.114
  85. Reina, G., Pascual, A., and Fundora, A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: Experimental results. Bioelectromagnetics, 22(8), 596–602, https://doi.org/10.1002/BEM.89
  86. Riseh, R. S., Vazvani, M. G., Vatankhah, M., and Kennedy, J. F. (2024). Chitosan coating of seeds improves the germination and growth performance of plants: A review. International Journal of Biological Macromolecules, 278(4), 134750, https://doi.org/10.1016/j.ijbiomac.2024.134750
  87. Rolim, A., Maciel, M., Kaneko, M., Consiglieri, O., Salgado-Santos, N., and Velasco, R. (2005). Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. Journal of AOAC International, 88(4), 1015–1019, https://doi.org/10.1093/JAOAC/88.4.1015
  88. Roy, B., Basu, A. K., Mondal, N., and Pal, A. K. (2022). Evaluation of genetic diversity of sesame by the study of seed storage protein through SDS-PAGE. Plant Archives, 22(1), 140–150, https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no1.024
  89. Saikia, L., and Upadhyaya, S. (2011). Antioxidant activity, phenol and flavonoid content of A. racemosus Willd. A medicinal plant grown using different organic manures. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2(2), 457–463. Retrieved from https://www.rjpbcs. com/pdf/2011_2(2)/56.pdf
  90. Salehi, H., Rad, C., Raza, A., and Chen, T. (2021). Foliar application of CeO2 nanoparticles alters generative components fitness and seed productivity in bean crop (Phaseolus vulgaris L.). Nanomaterials, 11(4), 862, https://doi.org/10.3390/nano11040862
  91. Samarah, N. H., Bany Hani, M. M. I., and Makhadmeh, I. M. (2021). Effect of magnetic treatment of water or seeds on germination and productivity of tomato plants under salinity stress. Horticulture, 7(8), 220, https://doi.org/10.3390/horticulturae7080220
  92. Santos, T., Sommaggio, L. R. D., and Marin-Morales, M. A. (2022). Phyto-genotoxicity assessment of different associations between sludges from water and sewage treatment plants, before and after the bioremediation process. Environmental Science and Pollution Research, 29(26), 40029–40040, https://doi.org/10.1007/s11356-022-18820-z
  93. Sardoei, A. S., Shahadadi, F., Vakili, M., and Gholamshahi, S. (2014). Effects of gibberellic acid (GA3) on phenolic compounds and antiradical activity of marigold (Calendula officinalis). International Journal of Bioscience, 4(3), 1–8. Retrieved from https://www.researchgate.net/publication/277598831
  94. Sarraf, M., Kataria, S., Taimourya, H., Sanyos, O., Menegatti, D., Jain, M., Ihtisham, M., and Liu, S. (2020). Magnetic field (MF) applications in plants: An overview. Plants (Basel, Switzerland), 9(9), 1139, https://doi.org/10.3390/plants9091139
  95. Schrader, J., Shi, P., Royer, D. L., Peppe, D. J., Gallagher, R. V., Li, Y., Wang, R., and Wright, I. J. (2021). Leaf size estimation based on leaf length, width and shape. Annals of Botany, 128(4), 395–406, https://doi.org/10.1093/aob/mcab078
  96. Shariatmadari, M. H., Parsa, M., Nezami, A., and Kafi, M. (2017). The effects of hormonal priming on emergence, growth and yield of chickpea under drought stress in glasshouse and field. Biosciences Research, 14(1), 34–41. Retrieved from https://www.researchgate.net/publication/316976859
  97. Siddiqui, M. H., Al-Whaibi, M. H., and Basalah, M. O. (2011). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma, 248, 503–511, https://doi.org/10.1007/s00709-010-0197-6
  98. Silva, A., Bode, F., Drake, A., Goldoni, S., Stevens, M., and Dreiss, C. (2014). Enzymatically cross linked gelatin/chitosan hydrogels: Tuning gel properties and cellular response. Macromolecular Bioscience, 14(6), 817–830, https://doi.org/10.1002/mabi.201300472
  99. Singh, R. K., Soares, B., Goufo, P., Castro, I., Cosme, F., Pinto-Sintra, A. L., Ines, A., Oliveira, A. A., and Falco, V. (2019). Chitosan upregulates the genes of the ROS pathway and enhances the antioxidant potential of grape (Vitis vinifera L. ‘Touriga Franca’ and ‘Tinto Cão’) tissues. Antioxidants, 8, 525, https://doi.org/10.3390/ANTIOX8110525
  100. Sun, X., Sun, Y., Li, Y., Wu, Q., and Wang, L. (2021). Identification and characterization of the seed storage proteins and related genes of Cannabis sativa L. Frontiers in Nutrition, 8, 678421, https://doi.org/10.3389/fnut.2021.678421
  101. Taghizadeh, M., and Solgi, E. (2017). Impact of heavy metal stress on in vitro seed germination and seedling growth indices of two turfgrass species. Journal of Rangeland Science, 7(3), 220–231. Retrieved from https://sanad.iau.ir/fa/Article/1067002
  102. Takehara, S., and Ueguchi-Tanaka, M. (2018). Gibberellin. In J. Hejátko and T. Hakoshima (Eds.), Plant structural biology in hormonal regulations (pp. 83–95). Cham, Switzerland: Springer, https://doi.org/10.1007/978-3-319-91352-0_6
  103. Tuna, A. L., Kaya, C., Dikilitas, M., and Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1–9, https://doi.org/10.1016/j.envexpbot.2007.06.007
  104. Uthairatanakij, A., Teixeira Da Silva, J. A., and Obsuwan, K. (2007). Chitosan for improving orchid production and quality. Orchid Science and Biotechnology, 1, 1–5. Retrieved from https://www.researchgate.net/publication/283515183
  105. Wang, Z., and Tang, M. (2021). Research progress on toxicity, function and mechanism of metal oxide nanoparticles on vascular endothelial cells. Journal of Applied Toxicology, 41(5), 683–700, https://doi.org/10.1002/JAT.4121
  106. Yadav, R. (2012). Phytochemical Screening of Spilanthes acmella plant parts. International Journal of Pharmaceutical Erudition, 1(4), 43–48. Retrieved from https://www.researchgate.net/publication/367285050
  107. Yang, F., Sui, L., Tang, C., Li, J., Cheng, K., and Xue, Q. (2021). Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. The Science of the Total Environment, 768, 145106, https://doi.org/10.1016/J.SCITOTENV.2021.145106
  108. Yang, Q., Zhao, D., and Liu, Q. (2020). Connections between amino acid metabolisms in plants: Lysine as an example. Frontiers in Plant Science, 11, 928, https://doi.org/10.3389/fpls.2020.00928
  109. Yogeesha, H. S., Bhanuprakash, K., and Naik, L. B. (2007). Effect of temperature and chemical pretreatment on seed germination in papaya (Carica papaya). Indian Journal of Agricultural Sciences, 77(10), 689–691. Retrieved from https://epubs.icar. org.in/index.php/IJAgS/article/view/3445
  110. Zanotti, R. F., Dias, D. C. F. D. S., Barro, R. S., Silva, L. J. D., and Sekita, M. C. (2014). Germination of ‘Solo’ papaya seeds treated with plant hormones. Journal of Seed Science, 36(1), 94–99, https://doi.org/10.1590/S2317-15372014000100012
DOI: https://doi.org/10.2478/fhort-2024-0036 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 533 - 558
Submitted on: Nov 21, 2024
Accepted on: Jan 21, 2025
Published on: Mar 27, 2025
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 M. S. Aboryia, Aml M. Abo AL-Saoud, El-Sayed A. El-Boraie, Hany G. Abd El-Gawad, Shaimaa Ismail, Mohamed Alkafafy, Bandar S. Aljuaid, Lina M. Abu-Ziada, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.