Have a personal or library account? Click to login
Comparison of different developmental stages of jujube (Ziziphus jujuba) fruit and identification of Hub genes Cover

Comparison of different developmental stages of jujube (Ziziphus jujuba) fruit and identification of Hub genes

Open Access
|Dec 2024

References

  1. Abbas, M. F., and Saggar, R. A. M. (1989). Respiration rate, ethylene production and certain chemical changes during the ripening of jujube fruits. Journal of Pomology & Horticultural Science, 64(2), 223–225, https://doi.org/10.1080/14620316.1989.11515948
  2. Agrawal, P., Singh, T., Pathak, D., and Chopra, H. (2023). An updated review of Ziziphus jujube: Major focus on its phytochemicals and pharmacological properties. Pharmacological Research, 8, 100297, https://doi.org/10.1016/j.prmcm.2023.100297
  3. Ando, K., Carr, K. M., and Grumet, R. (2012). Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics, 13, 518, https://doi.org/10.1186/1471-2164-13-518
  4. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., and Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25–29, https://doi.org/10.1038/75556
  5. Bavnhøj, L., Paulsen, P. A., Flores-Canales, J. C., Schiøtt, B., and Pedersen, B. P. (2021). Molecular mechanism of sugar transport in plants unveiled by structures of glucose/H+ symporter STP10. Nature Plants, 7(10), 1409–1419, https://doi.org/10.1038/s41477-021-00992-0
  6. Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60, https://doi.org/10.1038/nmeth.3176
  7. Chin, C., Chen, S., Wu, H., Ho, C., Ko, M., and Lin, C. (2014). cytoHubba: Identifying hub objects and subnetworks from complex interactome. BMC Systems Biology, 8(S4), S11, https://doi.org/10.1186/1752-0509-8-S4-S11
  8. Coleman, A. D., Maroschek, J., Raasch, L., Takken, F. L. W., Ranf, S., and Hückelhoven, R. (2021). The Arabidopsis leucine-rich repeat receptorlike kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor. New Phytologist, 229(6), 3453–3466, https://doi.org/10.1111/nph.17122
  9. Fujihara, R., Uchida, N., Tameshige, T., Kawamoto, N., Hotokezaka, Y., Higaki, T., and Aida, M. (2021). The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. Plant Biotechnology, 38(3), 317–322, https://doi.org/10.5511/plantbiotechnology.21.0508a
  10. García-Gómez, B. E., Ruiz, D., Salazar, J. A., Rubio, M., Martínez-García, P. J., and Martínez-Gómez, P. (2020). Analysis of metabolites and gene expression changes relative to apricot (Prunus armeniaca L.) fruit quality during development and ripening. Frontiers in Plant Science, 11, 1269, https://doi.org/10.3389/fpls.2020.01269
  11. Gou, M., Chen, Q., Wu, X., Liu, G., Fauconnier, M. L., and Bi, J. (2023). Novel insight into the evolution of volatile compounds during dynamic freezedrying of Ziziphus jujuba cv. Huizao based on GC–MS combined with multivariate data analysis. Food Chemistry, 410, 135368, https://doi.org/10.1016/j.foodchem.2022.135368
  12. Goyal, A., Tanwar, B., Sihag, M. K., and Sharma, V. (2022). Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chemistry, 373, 131459, https://doi.org/10.1016/j.foodchem.2021.131459
  13. Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., and Sozzani, R. (2019). Computational prediction of gene regulatory networks in plant growth and development. Current Opinion in Plant Biology, 47, 96–105, https://doi.org/10.1016/j.pbi.2018.10.005
  14. Hernández, M. L., Sicardo, M. D., and Martínez-Rivas, J. M. (2016). Differential contribution of endoplasmic reticulum and chloroplast rn-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant & Cell Physiology, 57(1), 138–151, https://doi.org/10.1093/pcp/pcv159
  15. Hou, S. Y., Shen, J., Sun, Z. X., and Li, H. Y. (2018). Identification of genes related to cell wall metabolism and fruit ripening in Ziziphus jujube using RNA-seq and expression analysis. Russian Journal of Plant Physiology, 65(4), 604–610, https://doi.org/10.1134/S102144371804012X
  16. Hyun, T. K., Lee, S., Rim, Y., Kumar, R., Han, X., Lee, S. Y., and Kim, J. Y. (2014). De-novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (Rubus coreanus Miquel). Plos One, 9(2), e88292, https://doi.org/10.1371/journal.pone.0088292
  17. Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360, https://doi.org/10.1038/nmeth.3317
  18. Kim, D. Y., Jang, M. J., Park, Y. J., and Kim, J. Y. (2021). Transcriptome analysis identified candidate genes involved in fruit body development under blue light in Lentinula edodes. Applied Sciences, 11(15), 6997, https://doi.org/10.3390/app11156997
  19. Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37, 907–915, https://doi.org/10.1038/s41587-019-0201-4
  20. Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30(20), 2843–2851, https://doi.org/10.1093/bioinformatics/btu356
  21. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760, https://doi.org/10.1093/bioinformatics/btp324
  22. Li, M., Shi, G., Zhu, J., Xie, H., and Li, X. (2021). Comprehensive evaluation of fruit quality of fresh jujube Dongzao. Non-wood Forest Research, 39(4), 256–263, https://doi.org/10.3390/agronomy13082095
  23. Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550, https://doi.org/10.1186/s13059-014-0550-8
  24. Lu, D., Wu, Y., Pan, Q., Zhang, Y., Qi, Y., and Bao, W. (2022a). Identification of key genes controlling L-ascorbic acid during Jujube (Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. Frontiers in Plant Science, 13, 950103, https://doi.org/10.3389/fpls.2022.950103
  25. Lu, D., Zhang, L., Wu, Y., Pan, Q., Zhang, Y., and Liu, P. (2022b). An integrated metabolome and transcriptome approach reveals the fruit flavor and regulatory network during jujube fruit development. Frontiers in Plant Science, 13, 952698, https://doi.org/10.3389/fpls.2022.952698
  26. Ma, C., Zhang, C., Wang, X., Zhu, F., Wang, X., Zhang, M., and Duan, Y. (2023). Alternative splicing analysis revealed the role of alphalinolenic acid and carotenoids in fruit development of Osmanthus fragrans. International Journal of Molecular Sciences, 24(10), 8666, https://doi.org/10.3390/ijms24108666
  27. Monaco, C.M.F., Proudfoot, R., Miotto, P.M., Herbst, E. A. F., Macpherson, R. E. K., and Holloway, G. P (2018). α-linolenic acid supplementation prevents exercise-induced improvements in white adipose tissue mitochondrial bioenergetics and whole-body glucose homeostasis in obese Zucker rats. Diabetologia, 61, 433–444, https://doi.org/10.1007/s00125-017-4456-3
  28. Muhammad, N., Uddin, N., Liu, Z., Yang, M., and Liu, M. (2024). Research progress and biosynthetic mechanisms of nutritional compounds obtained from various organs during the developmental stages of a medicinal plant (Chinese jujube). Plant Foods for Human Nutrition, 79(4), 744–758, https://doi.org/10.1007/s11130-024-01225-3
  29. Nawaz, I., Tariq, R., Nazir, T., Khan, I., Basit, A., Gul, H., Anwar, T., Awan, S. A., Bacha, S. A. S., Zhang, L., Zhang, C., and Cong, P. (2021). RNA-seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics, 113(1), 493–502, https://doi.org/10.1016/j.ygeno.2020.09.040
  30. Ng, J. K. T., Schröder, R., Sutherland, P. W., Hallett, I. C., Hall, I., Prakash, R., and Johnston, J. W. (2013). Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus × domestica) fruit growth. BMC Plant Biology, 13, 183, https://doi.org/10.1186/1471-2229-13-183
  31. Nilo-Poyanco, R., Moraga, C., Benedetto, G., Orellana, A., and Almeida, A. M. (2021). Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics, 22(1), 17, https://doi.org/10.1186/s12864-020-07299-y
  32. Pecenková, T., Hála, M., Kulich, I., Kocourková, D., Drdová, E., Fendrych, M., and Zársky, V. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. Journal of Experimental Botany, 62(6), 2107–2116, https://doi.org/10.1093/jxb/erq402
  33. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., and Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295, https://doi.org/10.1038/nbt.3122
  34. Powers, R.K., Goodspeed, A., Pielke-Lombardo, H., Tan, A. C., and Costello, J. C. (2018). GSEA-InContext: Identifying novel and common patterns in expression experiments. Bioinformatics, 34(13), i555–i564, https://doi.org/10.1093/bioinformatics/bty271
  35. Qu, Z., and Wang, Y. (1993). Fruit tree records of china, Chinese jujube volume. Beijing, China: Forestry Publishing House.
  36. Rahbardar, M. G., Kakhki, H. F., and Hosseinzadeh, H. (2024). Ziziphus jujuba (jujube) in metabolic syndrome: From traditional medicine to scientific validation. Current Nutrition Reports, 13, 845–866, https://doi.org/10.1007/s13668-024-00581-5
  37. Rashwan, A. K., Karim, N., Shishir, M. R. I., Bao, T., Lu, Y., and Chen, W. (2020). Jujube fruit: A potential nutritious fruit for the development of functional food products. Journal of Functional Foods, 75, 104205, https://doi.org/10.1016/j.jff.2020.104205
  38. Sahaka, M., Amara, S., Wattanakul, J., Gedi, M. A., Aldai, N., Parsiegla, G., and Carrière, F. (2020). The digestion of galactolipids and its ubiquitous function in nature for the uptake of the essential α-linolenic acid. Food & Function, 11(8), 6710–6744, https://doi.org/10.1039/d0fo01040e
  39. Sapkota, G., Delgado, E., Vanleeuwen, D., Holguin, F. O., Flores, N., Heyduck, R., and Yao, S. (2023). Dynamics of nutrients in jujube (Ziziphus jujuba Mill.) at different maturity stages, cultivars, and locations in the Southwest United States. Hortscience: A Publication of the American Society for Horticultural Science, 58(2), 155–163, https://doi.org/10.21273/hortsci16880-22
  40. Savoi, S., Herrera, J. C., Forneck, A., and Griesser, M. (2019). Transcriptomics of the grape berry shrivel ripening disorder. Plant Molecular Biology, 100, 285–301, https://doi.org/10.1007/s11103-019-00859-1
  41. Sobhani, Z., Nikoofal-Sahlabadi, S., Amiri, M. S., Ramezani, M., Emami, S. A., and Sahebkar, A. (2020). Therapeutic effects of Ziziphus jujuba Mill. fruit in traditional and modern medicine: A review. Journal of Medicinal Chemistry, 16(8), 1069–1088, https://doi.org/10.2174/1573406415666191031143553
  42. Sohrabi, E., Tohidfa, M., Ahmadikhah, A., and Seraj, R. G. M. (2023). Data-mining of barley to identify salt stress hub genes, gene expression analysis and recombinant plasmid construction. Iranian Journal of Biotechnology, 21(3), e3389, https://doi.org/10.30498/ijb.2023.343700.3389
  43. Song, J., Bi, J., Chen, Q., Wu, X., Lyu, Y., and Meng, X. (2019). Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chemistry, 270, 344–352, https://doi.org/10.1016/j. foodchem.2018.07.102
  44. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., and Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550, https://doi.org/10.1073/pnas.0506580102
  45. Tomczak, A., Mortensen, J. M., Winnenburg, R., Liu, C., Alessi, D. T., Swamy, V., Vallania, F., Lofgren, S., Haynes, W., Shah, N. H., Musen, M. A., and Khatri, P. (2018). Interpretation of biological experiments changes with evolution of the gene ontology and its annotations. Scientific Reports, 8, 5115, https://doi.org/10.1038/s41598-018-23395-2
  46. Travisany, D., Ayala-Raso, A., Genova, A. D., Monsalve, L., Bernales, M., Martínezc, J. P., and Fuentes, L. (2019). RNA-seq analysis and transcriptome assembly of raspberry fruit (Rubus idaeus ‥Heritage‥) revealed several candidate genes involved in fruit development and ripening. Scientia Horticulturae, 254, 26–34, https://doi.org/10.1016/j.scienta.2019.04.018
  47. Wang, H., Liu, C., Sun, L., Yang, S., Fan, X., Zhang, Y., and Jiang, J. (2023). RNA-sequencing analysis of candidate genes involved in berry development in ‘Summer Black’ grapes and its early bud mutants varieties. Scientia Horticulturae, 308, 111568, https://doi.org/10.1016/j.scienta.2022.111568
  48. Wang, X., Song, S., Li, M., Bo, W., Li, Y., Pang, X., and Cao, M. (2021). Identification and expression analysis based on RNA-seq of the pectin methylesterase gene family in Ziziphus jujuba. Journal of Beijing Forestry University, 43 (4), 8–16, https://doi.org/10.12171/j.1000-1522.20200338
  49. Wang, Y., Huang, Y., Song, P., Peng, X., Li, X., Su, R., and Deng, Q. (2024). Metabolome and transcriptome reveal high abundance of bioactive substances in albino jujube fruit as potential function food. Food Bioscience, 59, 103991, https://doi.org/10.1016/j.fbio.2024.103991
  50. Yu, G., Wang, L., Han, Y., and He, Q. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS: A Journal of Integrative Biology, 16(5), 284–287, https://doi.org/10.1089/omi.2011.0118
  51. Zhang, R., Sun, X., Vidyarthi, S. K., Wang, F., Zhang, Y., and Pan, Z. (2021). Characteristics of fatty acids in the Chinese jujube fruits (Ziziphus jujuba Mill.). Journal of Agriculture and Food Research, 4, 100129, https://doi.org/10.1016/j.jafr.2021.100129
  52. Zhang, X., Wen, B., Zhang, Y., Li, Y., Yu, C., Peng, Z., and Li, J. (2022). Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Scientia Horticulturae, 295, 110823, https://doi.org/10.1016/j.scienta.2021.110823
DOI: https://doi.org/10.2478/fhort-2024-0028 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 435 - 448
Submitted on: Apr 10, 2024
Accepted on: Oct 17, 2024
Published on: Dec 20, 2024
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Yalan Li, Tian Ren, Siyu Qu, Qing Hao, Dingyu Fan, Alimu Alimire, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.