References
- Akagic, A., Vranac-Oras, A., Orucevic-Zuljevic, S., Spaho, N., Drkenda, P., Bijedic, A., Memic, S., and Hudina, M. (2020). Geographic variability of sugars and organic acids in selected wild fruit species. Foods 9, 462, https://doi.org/10.3390/foods9040462.
- Akin, M., Nyberg, A., Postman, J., Mehlenbacher, S., and Bassil, N. (2016). A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification. European Journal of Horticultural Science, 81(6), 327–338, https://doi.org/10.17660/eJHS.2016/81.6.6.
- Alibabic, V., Skender, A., Orascanin, M., and Mujic, I. (2019). Application of multivariate statistic to classify blueberry fruits. In I. Karabegovic (Ed.), New technologies. development and application. Lecture notes in networks and systems (vol. 42, pp. 498–506). Cham, Switzerland: Springer.
- Bayram, H. M., and Ozturkcan, S. A. (2020). Bioactive components and biological properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Journal of Functional Foods, 75, 104252, https://doi.org/10.1016/j.jff.2020.104252.
- Benjak, A., Ercisli, S., Vokurka, A., Maletic, E., and Pejic, I. (2005) Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis, 44(2), 73–77.
- Borroto Fernandez, E. G., Khayatzadeh, N., Mészáros, G., Fink, S., Hanzer, V., Sölkner, J., and Laimer, M. (2023). Genetic evaluation of a wildtype population of Cornus mas accessions in Austria. Diversity, 15(10), 1031, https://doi.org/10.3390/d15101031.
- Boyaci, S., Polat, S., and Kafkas, N. E. (2023). Determination of the phytochemical contents and pomological properties of chokeberry (Aronia melanocarpa L.) fruit in different harvesting period. Turkish Journal of Agriculture and Forestry, 47(6), 842–850, https://doi.org/10.55730/1300-011X.3132.
- Celik, A., Ercisli, S., and Turgut, N. (2007). Some physical, pomological and nutritional properties of kiwifruit cv. Hayward. International Journal of Food Sciences and Nutrition, 58(6), 411–418.
- Cullings, K. W. (1992). Design and testing of a plant specific PCR primer for ecological and evolutionary studies. Molecular Ecology, 1(4), 233–240, https://doi.org/10.1111/j.1365-294X.1992.tb00182.
- Doyle, J. J., and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
- Drkenda, P., Spahic, A., Begic-Akagic, A., Gasi, F., Vranac, A., Hudina, M., and Blanke, M. (2014). Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cornus mas L.) in Bosnia and Herzegovina. Erwerbs-Obstbau, 56, 59–66, https://doi.org/10.1007/s10341-014-0203-9.
- Durul M. S., and Aktas T. K. (2023). In vitro propagation of Cydonia oblonga cv. Esme. Turkish Journal of Agriculture and Forestry, 47(4), 578–589, https://doi.org/10.55730/1300-011X.3110.
- Ercisli, S., Esitken, A., Turkkal, C., and Orhan, E. (2005). The allelopathic effects of juglone and walnut leaf extracts on yield, growth, chemical and PNE composition of strawberry cv. Fern. Plant, Soil and Environment, 51(6), 283–387, https://doi.org/10.17221/3587-PSE.
- Erturk, Y., Ercisli, S., and Cakmakci, R. (2012). Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. Journal of Plant Nutrition, 35(6), 817–826, https://doi.org/10.1080/01904167.2012.663437.
- Eyduran, S. P., Ercisli, S., Akin, M., Beyhan, O., Gecer, M. K., Eyduran, E., and Erturk, Y. E. (2015).Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. Journal of Applied Botany and Food Quality, 88, 134–138, https://doi.org/10.5073/JABFQ.2015.088.019.
- Filipovic, D., Fotiric Aksic, M., Dabic Zagorac, D., and Natic, M. (2020). Gathered fruits as grave goods? Cornelian cherry remains from a Mesolithic grave at the site of Vlasac, Danube Gorges, South-East Europe. Quaternary International, 541, 130–140, https://doi.org/10.1016/j.quaint.2019.10.018.
- Gasi, F., Kurtovic, M., Kalamujic, B., Pojskic, N., Grahic, J., Kaiser, C., and Meland, M. (2013a). Assessment of European pear (Pyrus communis L.) genetic resources in Bosnia and Herzegovina using microsatellite markers. Scientia Horticulturae, 157(1), 74–83, https://doi.org/10.1016/j.scientia.2013.04.017.
- Gasi, F., Simon, S., Pojskic, N., Kurtovic, M., Pejic, I., Kaiser, C., and Meland, M. (2013b). Evaluation of apple (Malus × domestica) genetic resources in Bosnia and Herzegovina using microsatellite markers. HortScience, 48(1), 13–21, https://doi.org/10.21273/HORTSCI.48.1.13.
- Guzel-Seydim, Z. B., Gökirmakli, Ç., and Greene, A. K. (2021). A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends in Food Science & Technology, 113, 42–53.
- Jacimovic, V., Bozovic, D., Ercisli, S., Ognjanov, V., and Bosancic, B. (2015). Some fruit characteristics of selected cornelian cherries (Cornus mas L.) from Montenegro. Erwerbs-Obstbau, 57, 119–124, https://doi.org/10.1007/s10341-015-0238-6.
- Kazimierski, M., Regula, J., and Molska, M. (2019). Cornelian cherry (Cornus mas L.) - characteristics, nutritional and pro-health properties. Acta Scientiarum Polonorum, Technologia Alimentaria, 18, 5–12, https://doi.org/10.17306/J.AFS.0628.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.
- Lavic, D., Radovic, M., Aliman, J., Badzak, N., Kulina, M., Hadziabulic, A., Ilhan, G., Mureşan, C., and Marc, R. A. (2023). Influence of cultivar and fertilization treatment on bioactive content of some apple (Malus domestica Borkh.) cultivars. Turkish Journal of Agriculture and Forestry, 47(3), 345–356, https://doi.org/10.55730/1300-011X.3091.
- Martinovic, A., and Cavoski, I. (2020). The exploitation of cornelian cherry (Cornus mas L.) cultivars and genotypes from Montenegro as a source of natural bioactive compounds. Food Chemistry, 318, 126549, https://doi.org/10.1016/j.foodchem.2020.126549.
- Nei, M. (1973). Analysis of gene diversity in subdivided populations. The Proceedings of the National Academy of Sciences, 70(12), 3321–3323.
- Nei, M. (1987). Molecular Evolutionary Genetics. New York, USA: Columbia University Press.
- Nincevic Runjic, T., Jug-Dujakovic, M., Runjic, M., and Luczaj, L. (2024). Wild edible plants used in Dalmatian Zagora (Croatia). Plants, 13(8), 1079, https://doi.org/10.3390/plants13081079.
- Papagrigoriou, T., Iliadi, P., Mitic, M. N., Mrmosanin, J. M., Papanastasi, K., Karapatzak, E., Maloupa, E., Gkourogianni, A. V., Badeka, A. V., Krigas, N., and Lazari, D. (2023). Wildgrowing and conventionally or organically cultivated Sambucus nigra germplasm: Fruit phytochemical profile, total phenolic content, antioxidant activity, and leaf elements. Plants, 12(8), 1701, https://doi.org/10.3390/plants12081701.
- Peakall, R., and Smouse, P. E. (2012). GenAlex 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537–2539.
- Poljak, I., Vahcic, N., Liber, Z., Satovic, Z., and Idzojtic, M. (2022). Morphological and chemical variation of wild sweet chestnut (Castanea sativa Mill.) populations. Forests, 13(1), 55, https://doi.org/10.3390/f13010055.
- Skender, A., Kurtovic, M., Pojskic, N., Kalamujic Stroil, B., Hadziabulic, S., and Gasi, F. (2017). Genetic structure and diversity of European chestnut (Castanea sativa Mill.) population in western Balkans: On a crossroad between east and west. Genetika, 49(2), 613–626, https://doi.org/10.2298/GENSR1702613S.
- Skender, A., Hadziabulic, S., Ercisli, S., Hasanbegovic, J., Dedic, S., Almeer, R., Sayed, A. A., Assouguem, A., and Ullah, R. (2022). Morphological and biochemical properties in fruits of naturally grown cornelian cherry (Cornus mas L.) genotypes in northwest Bosnia and Herzegovina. Sustainability, 14(8), 4579, https://doi.org/10.3390/su14084579.
- Szot, I., Lipa, T., and Sosnowska, B. (2019). Evaluation of yield and fruit quality of several ecotypes of cornelian cherry (Cornus mas L.) in Polish conditions. Acta Scientiarum Polonorum, Hortorum Cultus, 18, 141–150, https://doi.org/10.24326/asphc.2019.6.14.
- Szot, I., Lysiak, G. P., and Sosnowska, B. (2024). The beneficial effects of anthocyanins from cornelian cherry (Cornus mas L.) fruits and their possible uses: A review. Agriculture, 14(1), 52, https://doi.org/10.3390/agriculture14010052.
- Wadl, P. A., Szyp-Borowska, I., Piórecki, N., Schlarbaum, S. E., Scheffler, B. E., and Trigiano, R. N. (2014). Development of microsatellites from Cornus mas L. (Cornaceae) and characterization of genetic diversity of cornelian cherries from China, central Europe, and the United States. Scientia Horticulturae, 179, 314–320, https://doi.org/10.1016/j.scientia.2014.09.037.
- Wei, G. C., and Becher, P. F. (1984). Improvements in mechanical properties in SiC by the addition of TiC Particles. Journal of the American Ceramic Society, 67(8), 571–574.