Have a personal or library account? Click to login
The effect of osmotic stress, lighting spectrum and temperature on growth and gene expression related to anthocyanin biosynthetic pathway in wild strawberry (Fragaria vesca L.) in vitro Cover

The effect of osmotic stress, lighting spectrum and temperature on growth and gene expression related to anthocyanin biosynthetic pathway in wild strawberry (Fragaria vesca L.) in vitro

Open Access
|Dec 2023

References

  1. Abdullah, G., Alkhateeb, A., and Layous, L. (2013). Response of the strawberry cv. “Elsanta” micro propagation in vitro to different carbon sources and concentrations. Jordan Journal of Agricultural Sciences, 9(1), 1–11, <a href="https://doi.org/10.12816/0001086." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12816/0001086.</a>
  2. Appelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., Martens, S., Mock, H. P., Martin, C., and Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 48, 218-232, <a href="https://doi.org/10.1016/j.ymben.2018.06.004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ymben.2018.06.004.</a>
  3. Bonasera, J. M., Kim, J. F., and Beer, S. V. (2006). PR genes of apple: Identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology, 6, 23, <a href="https://doi.org/10.1186/1471-2229-6-23." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1471-2229-6-23.</a>
  4. Carbone, F., Preuss, A., De Vos, R. C. H., D’amico, E., Perrotta, G., Bovy, A. G., Martens, S., and Rosati, C. (2009). Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant, Cell and Environment, 32(8), 1117-1131, <a href="https://doi.org/10.1111/j.1365-3040.2009.01994.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-3040.2009.01994.x.</a>
  5. Cassells, A. C., Joyce, S. M., O’herlihy, E., Perez-Sanz, M. J., and Walsh, C. (2003). Stress and quality in in vitro culture. Acta Horticulturae, 625, 153-164. <a href="https://doi.org/10.17660/ActaHortic.2003.625.16." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17660/ActaHortic.2003.625.16.</a>
  6. Christie, P. J., Alfenito, M. R., and Walbot, V. (1994). Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 194(4), 541-549. https://doi.org/10.1007/ BF00714468.
  7. Cui, Z. H., Bi, W. L., Hao, X. Y., Li, P. M., Duan, Y., Walker, M. A., Xu, J., and Wang, Q. C. (2017). Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leafroll-associated virus 3-Infected in vitro grapevine (Vitis vinifera) leaves. Plant Disease, 101(9), 1606-1615. <a href="https://doi.org/10.1094/PDIS-01-17-0104-RE." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1094/PDIS-01-17-0104-RE.</a>
  8. Das, P. K., Shin, D. H., Choi, S. B., and Park, Y. Il. (2012). Sugar-hormone cross-talk in anthocyanin biosynthesis. Molecules and Cells, 34(6), 501-507. <a href="https://doi.org/10.1007/s10059-012-0151-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10059-012-0151-x.</a>
  9. Deroles, S. (2009). Anthocyanin biosynthesis in plant cell cultures: A potential source of natural colourants. In C. Winefield, K. Davies, and K. Gould (Eds), Anthocyanins: Biosynthesis, functions, and applications (pp. 108-167). New York, NY, USA: Springer. <a href="https://doi.org/10.1007/978-0-387-77335-3_5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-0-387-77335-3_5.</a>
  10. Do, C. B., and Cormier, F. (1990). Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Reports, 9(3), 143-146. https://doi.org/10.1007/ BF00232091.
  11. Fischer, T. C., Mirbeth, B., Rentsch, J., Sutter, C., Ring, L., Flachowsky, H., Habegger, R., Hoffmann, T., Hanke, M. V., and Schwab, W. (2014). Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa). New Phytologist, 201(2), 440-451. <a href="https://doi.org/10.1111/nph.12528." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/nph.12528.</a>
  12. Gaiotti, F., Pastore, C., Filippetti, I., Lovat, L., Belfiore, N., and Tomasi, D. (2018). Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Scientific Reports, 8(1), 8719. <a href="https://doi.org/10.1038/s41598-018-26921-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-26921-4.</a>
  13. Goto, E., Hayashi, K., Furuyama, S., Hikosaka, S., and Ishigami, Y. (2016). Effect of UV light on phytochemical accumulation and expression of anthocyanin biosynthesis genes in red leaf lettuce. Acta Horticulturae, 1134, 179-186. <a href="https://doi.org/10.17660/ActaHortic.2016.1134.24." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17660/ActaHortic.2016.1134.24.</a>
  14. Gould, K., and Lister, C. (2006). Flavonoid functions in plants. In Ø. M. Andersen and K. R. Markham(Eds), Flavonoids: Chemistry, Biochemistry and Applications (1st ed., pp. 397-441). London, UK: CRC, Taylor & Francis.
  15. Griesser, M., Hoffmann, T., Bellido M. L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Muñoz-Blanco, J., and Schwab, W. (2008). Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiology, 146(4), 1528-1539, <a href="https://doi.org/10.1104/pp.107.114280." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1104/pp.107.114280.</a>
  16. Guo, J., Han, W., and Wang, M. H. (2009). Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review. African Journal of Biotechnology, 7(25), 4966-4972.
  17. Hijaz, F., Nehela, Y., Jones, S., Dutt, M., Grosser, J., Manthey, J., and Killiny, N. (2018). Metabolically engineered anthocyanin-producing lime provides additional nutritional value and antioxidant potential to juice. Plant Biotechnology Reports, 12, 329-346, <a href="https://doi.org/10.1007/s11816-018-0497-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11816-018-0497-4.</a>
  18. Jaakola, L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 18(9), 477-483, <a href="https://doi.org/10.1016/j.tplants.2013.06.003." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tplants.2013.06.003.</a>
  19. Jeong, C. Y., Kim, J. H., Lee, W. J., Jin, J. Y., Kim, J., Hong, S. W., and Lee, H. (2018). AtMyb56 regulates anthocyanin levels via the modulation of AtGPT2 expression in response to sucrose in Arabidopsis. Molecules and Cells, 41(4), 351-361, <a href="https://doi.org/10.14348/molcells.2018.2195." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.14348/molcells.2018.2195.</a>
  20. Khan Ra, Abbas N. (2023). Role of epigenetic and post-translational modifications in anthocyanin biosynthesis: A review. Gene, 887, 147694, https://doi:10.1016/j.gene.2023.147694.
  21. Kim, S., Hwang, G., Lee, S., Zhu, J. Y., Paik, I., Nguyen, T. T., Kim, J., and Oh, E. (2017). High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Frontiers in Plant Science, 8, 1787, <a href="https://doi.org/10.3389/fpls.2017.01787." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fpls.2017.01787.</a>
  22. Kissimon, J., Tantos, Á., Mészáros, A., Jámbor-Benczúr, E, and Horváth, G. (1999). Stress alterations in growth parameters, pigment content and photosynthetic functions of in vitro cultured plants. Zeitschrift für Naturforschung C, 54(9-10), 834-839, <a href="https://doi.org/10.1515/znc-1999-9-1033." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/znc-1999-9-1033.</a>
  23. Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., and Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56-62, <a href="https://doi.org/10.1016/j.postharvbio.2013.12.006." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.postharvbio.2013.12.006.</a>
  24. Lightbourn, G. J., Stommel, J. R., and Griesbach, R. J. (2007). Epistatic interactions influencing anthocyanin gene expression in Capsicum annuum. Journal of the American Society for Horticultural Science, 132(6), 824-829.
  25. Lin-Wang, K., Mcghie, T K., Wang, M., Liu, Y., Warren, B., Storey, R., Espley, R. V., and Allan, A. C. (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Frontiers in Plant Science, 5, 651, <a href="https://doi.org/10.3389/fpls.2014.00651." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fpls.2014.00651.</a>
  26. Liu, Y., Hou, H., Jiang, X., Wang, P., Dai, X., Chen, W., Gao, L., and Xia, T. (2018). A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB−bHLH−WD40 ternary complexes. International Journal of Molecular Sciences, 19 (6), 1686, <a href="https://doi.org/10.3390/ijms19061686." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms19061686.</a>
  27. Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408, https://doi.org/10.1006/ meth.2001.1262.
  28. Loberant, B., and Altman, A. (2010). Micropropagation of plants. In M. C. Flickinger (Ed.), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology (pp. 1-17). American Cancer Society, New York, USA: John Wiley & Sons, Inc. <a href="https://doi.org/10.1002/9780470054581.eib442." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9780470054581.eib442.</a>
  29. Matkowski, A. (2008). Plant in vitro culture for the production of antioxidants - A review. Biotechnology Advances, 26, 548-560, <a href="https://doi.org/10.1016/j.biotechadv.2008.07.001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biotechadv.2008.07.001.</a>
  30. Mattioli, R., Francioso, A., Mosca, L., and Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules (Basel, Switzerland), 25(17), 3809, <a href="https://doi.org/10.3390/MOLECULES25173809." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/MOLECULES25173809.</a>
  31. Miller, A. R., Scheereus, J. C., Erb, P. S., and Chandler, C. K. (1992). Enhanced strawberry seed germination through in vitro culture of cut achenes. Journal of the American Society for Horticultural Science, 117(2), 313-316, <a href="https://doi.org/10.21273/JASHS.117.2.313." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21273/JASHS.117.2.313.</a>
  32. Miranda, J. H., and Williams, R. (2007). Developmental influence of in vitro light quality and carbon dioxide on photochemical efficiency of PS II of strawberry leaves (Fragaria × ananassa). Journal of Applied Horticulture, 9(1), 13-16, https://doi.org/doi.org/10.37855/jah.2007.v09i01.03.
  33. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497, <a href="https://doi.org/10.1111/j.1399-3054.1962.tb08052.x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.</a>
  34. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A. J., Tohge, T., Yamazaki, M., and Saito, K. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 77(3), 367-379, <a href="https://doi.org/10.1111/tpj.12388." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/tpj.12388.</a>
  35. Niu, J., Zhang, G., Zhang, W., Goltsev, V., Sun, S., Wang, J., Li, P., and Ma, F (2017). Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Scientific Reports, 7(1), 7684. <a href="https://doi.org/10.1038/s41598-017-07896-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-017-07896-0.</a>
  36. Okutsu, K., Matsushita, K., and Ikeda, T. (2018). Differential anthocyanin concentrations and expression of anthocyanin biosynthesis genes in strawberry ‘Sachinoka’ during fruit ripening under high-temperature stress. Environmental Control in Biology, 56(1), 1-6, <a href="https://doi.org/10.2525/ecb.56.1." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2525/ecb.56.1.</a>
  37. Sajid, Z. A., and Aftab, F (2022). Improvement of polyethylene glycol, sorbitol, mannitol, and sucrose-induced osmotic stress tolerance through modulation of the polyamines, proteins, and superoxide dismutase activity in potato. International Journal of Agronomy, 2022, 5158768, <a href="https://doi.org/10.1155/2022/5158768." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/5158768.</a>
  38. Sakthivelu, G., Devi, M. K. A., Giridhar, P., Rajasekaran, T., Ravishankar, G. A., Nedev, T., and Kosturkova, G. (2008). Drought-induced alterations in growth, osmotic potential and in vitro regeneration of soybean cultivars. General and Applied Plant Physiology, 34, 103-112.
  39. Samuoliené, G., Brazaityté, A., Sirtautas, R., Viršilé, A., Sakalauskaité, J., Sakalauskiené, S., and Duchovskis, P. (2013). LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture, 93(13), 3286-3291, <a href="https://doi.org/10.1002/jsfa.6173." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jsfa.6173.</a>
  40. Simões, C., Albarello, N., Castro, T., and Mansur, E. (2012). Production of anthocyanins by plant cell and tissue culture strategies. In I. E. Orhan (Ed.), Biotechnological Production of Plant Secondary Metabolites (pp. 67-86). Dubai, UAE: Bentham Science Publishers, https://doi.org/10.2174/ 978160805114411201010067.
  41. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., and Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140(2), 637-646, <a href="https://doi.org/10.1104/pp.105.072579." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1104/pp.105.072579.</a>
  42. Starkevič, P., Paukštyte, J., Kazanavičiute, V., Denkovskiene, E., Stanys, V., Bendokas, V., Šikšnianas, T., Ražanskiené, A., and Ražanskas, R. (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE, 10(5), e0126991, <a href="https://doi.org/10.1371/journal.pone.0126991." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0126991.</a>
  43. Tripathy, B. C., and Brown, C. S. (1995). Root-shoot interaction in the greening of wheat seedlings grown under red light. Plant Physiology, 107(2), 407-411, <a href="https://doi.org/10.1104/pp.107.2.407." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1104/pp.107.2.407.</a>
  44. Tulipani, S., Marzban, G., Herndl, A., Laimer, M., Mezzetti, B., and Battino, M. (2011). Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chemistry, 124, 906-913, <a href="https://doi.org/10.1016/j.foodchem.2010.07.018." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.foodchem.2010.07.018.</a>
  45. Verma, D., Ansari, M. W., Agrawal, G. K., Rakwal, R., Shukla, A., and Tuteja, N. (2013). In vitro selection and field responses of somaclonal variant plants of rice cv PR113 for drought tolerance. Plant Signaling & Behavior, 8(4), e23519, <a href="https://doi.org/10.4161/psb.23519." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4161/psb.23519.</a>
  46. Wang, N., Zhang, Z., Jiang, S., Xu, H., Wang, Y., Feng, S., and Chen, X. (2016). Synergistic effects of light and temperature on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana) . Plant Cell, Tissue and Organ Culture (PCTOC), 127(1), 217-227, <a href="https://doi.org/10.1007/s11240-016-1044-z." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11240-016-1044-z.</a>
  47. Yosefi, A., Mozafari, A. Akbar, and Javadi, T. (2022). In vitro assessment of strawberry (Fragaria × ananassa Duch.) plant responses to water shortage stress under nano-iron application. In Vitro Cellular and Developmental Biology – Plant, 58(4), 499-510, <a href="https://doi.org/10.1007/S11627-022-10255-Y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/S11627-022-10255-Y.</a>
  48. Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., Luo, Y., Sun, B., Wang, X., and Tang, H. (2018). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria × ananassa). Molecules, 23(4), 820, <a href="https://doi.org/10.3390/molecules23040820." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules23040820.</a>
DOI: https://doi.org/10.2478/fhort-2023-0030 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 419 - 431
Submitted on: Oct 26, 2022
Accepted on: Oct 24, 2023
Published on: Dec 31, 2023
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Jurgita Vinskienė, Vidmantas Bendokas, Vidmantas Stanys, Audrius Sasnauskas, Rytis Rugienius, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.