Have a personal or library account? Click to login
α-Glucosidase inhibitory fatty acids from Morchella fluvialis mushroom Cover

α-Glucosidase inhibitory fatty acids from Morchella fluvialis mushroom

Open Access
|Dec 2023

References

  1. Ahn, J. H., Park, Y., Yeon, S. W., Jo, Y. H., Han, Y. K., Turk, A., and Lee, M. K. (2020). Phenylpropanoid-conjugated triterpenoids from the leaves of Actinidia arguta and their inhibitory activity on α-glucosidase. Journal of Natural Products, 83(5), 1416–1423, doi: 10.1021/acs.jnatprod.9b00643.
  2. Balasubramani, S. P., Murugan, R., Ravikumar, K., and Venkatasubramanian, P. (2010). Development of ITS sequence based molecular marker to distinguish, Tribulus terrestris L. (Zygophyllaceae) from its adulterants. Fitoterapia, 81(6), 503–508, doi: 10.1016/j.fitote.2010.01.002.
  3. Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., and Ferreira, I. C. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46(8), 2742–2747, doi: 10.1016/j.fct.2008.04.030.
  4. Barros, L., Pereira, C., and Ferreira, I. C. (2013). Optimized analysis of organic acids in edible mushrooms from Portugal by ultra fast liquid chromatography and photodiode array detection. Food Analytical Methods, 6(1), 309–316, doi: 10.1007/s12161-012-9443-1.
  5. Dong, M., Oda, Y., and Hirota, M. (2000). (10E, 12Z, 15Z)-9-hydroxy-10, 12, 15-octadecatrienoic acid methyl ester as an anti-inflammatory compound from Ehretia dicksonii. Bioscience, Biotechnology, and Biochemistry, 64(4), 882–886, doi: 10.1271/bbb.64.882.
  6. Ferreira, I. C., Barros, L., and Abreu, R. (2009). Antioxidants in wild mushrooms. Current Medicinal Chemistry, 16(12), 1543–1560, doi: 10.2174/092986709787909587.
  7. Giacco, F., and Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070, doi: 10.1161/CIRCRESAHA.110.22354.
  8. Heleno, S. A., Barros, L., Sousa, M. J., Martins, A., and Ferreira, I. C. (2010). Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119(4), 1443–1450, doi: 10.1016/j.foodchem.2009.09.025.
  9. Jinming, G., Lin, H., and Jikai, L. (2001). A novel sterol from Chinese truffles Tuber indicum. Steroids, 66(10), 771–775, doi: 10.1016/s0039-128x(01)00105-2.
  10. Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S., and Rathod, R. (2015). Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opinion on Pharmacotherapy, 16(13), 1959–1981, doi:10.1517/14656566.2015.1070827.
  11. Kim, J.-A., Lau, E., Tay, D., and De Blanco, E. J. C. (2011). Antioxidant and NF-κB inhibitory constituents isolated from Morchella esculenta. Natural Product Research, 25(15), 1412–1417, doi: 10.1080/14786410802425746.
  12. Lindequist, U., Niedermeyer, T. H., and Jülich, W.-D. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285–299, doi: 10.1093/ecam/neh107.
  13. Lv, H., Chen, S., Xu, X., Zhu, M., Zhao, W., Liu, K., and Liu, K. (2015). Isolation of linoleic acid from Sambucus williamsii seed oil extracted by high pressure fluid and its antioxidant, antiglycemic, hypolipidemic activities. International Journal of Food Engineering, 11(3), 383–391, doi: 10.1515/ijfe-2014-0234.
  14. Maritim, A., Sanders, A., and Watkins III, J. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38, doi: 10.1002/jbt.10058.
  15. Martel, J., Ojcius, D. M., Chang, C.-J., Lin, C.-S., Lu, C.-C., Ko, Y.-F., and Young, J. D. (2017). Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13(3), 149–160, doi: 10.1038/nrendo.2016.142.
  16. Paterson, R. R. M., and Lima, N. (2014). Biomedical effects of mushrooms with emphasis on pure compounds. Biomedical Journal, 37(6), 357–368, doi: 10.4103/2319-4170.143502.
  17. Pitocco,D.,Tesauro,M.,Alessandro,R.,Ghirlanda,G., and Cardillo, C. (2013). Oxidative stress in diabetes: Implications for vascular and other complications. International Journal of Molecular Sciences, 14(11), 21525–21550, doi: 10.3390/ijms141121525.
  18. Rahgo, Z., Mojerlou, S., and Jahanbin, K. (2019). Statistical optimization of culture conditions for protein production by a newly isolated Morchella fluvialis. BioMed Research International, 2019, 7326590, doi: 10.1155/2019/7326590.
  19. Rendra, E., Riabov, V., Mossel, D. M., Sevastyanova, T., Harmsen,M.C.,andKzhyshkowska.,J. (2019).Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology, 224(2), 242–253, doi: 10.1016/j.imbio.2018.11.010.
  20. Ríos, J. L., Francini, F., and Schinella, G. R. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81(12/13), 975–994, doi: 10.1055/s-0035-1546131.
  21. Saito, N., Sakai, H., Suzuki, S., Sekihara, H., and Yajima, Y. (1998). Effect of an α-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. Journal of International Medical Research, 26(5), 219–232, doi: 10.1177/030006059802600501.
  22. Seo, H. W., Hung, T. M., Na, M., Jung, H. J., Kim, J. C., Choi, J. S., and Bae, K. (2009). Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Archives of Pharmacal Research, 32(11), 1573–1579, doi: 10.1007/s12272-009-2109-x.
  23. Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C., and Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100–103, doi: 10.1016/j.sajb.2018.01.007.
  24. Tietel, Z., and Masaphy, S. (2018). True morels (Morchella)—Nutritional and phytochemical composition, health benefits and flavor: A review. Critical Reviews in Food Science and Nutrition, 58(11), 1888–1901, doi:10.1080/10408398.2017.12 85269.
  25. Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., and Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708, doi: 10.3390/molecules21060708.
  26. Vaz, J. A., Barros, L., Martins, A., Morais, J. S., Vasconcelos, M. H., and Ferreira, I. C. (2011). Phenolic profile of seventeen Portuguese wild mushrooms. LWT-Food Science and Technology, 44(1), 343–346, doi: 10.1016/j.lwt.2010.06.029.
  27. Zanes Furlani, R. P., and Godoy, H. T. (2007). Nutritional value of edible mushrooms. Ciȇncia e Tecnologia de Alimentos, 27(1), 154–157, doi: 10.1590/S0101-20612007000100027.
DOI: https://doi.org/10.2478/fhort-2023-0026 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 369 - 379
Submitted on: Feb 17, 2023
Accepted on: Aug 4, 2023
Published on: Dec 31, 2023
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ayman Turk, Solip Lee, Hak Hyun Lee, Sang Won Yeon, Se Hwan Ryu, Geum Hee Seo, Hyun You Chang, Bang Yeon Hwang, Mi Kyeong Lee, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.