Have a personal or library account? Click to login
Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress Cover

Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress

Open Access
|Feb 2022

References

  1. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., and Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 1–38, doi: 10.3390/agronomy7010018.
  2. Askary, M., Aminitalebi, S., Amini, F., and Balout, A. D. (2017). Effects of iron nanoparticles on Mentha piperita L. under salinity stress Meheri. Biologija, 63(1), 65–75.
  3. Blasco, B., Leyva, R., Romero, L., and Ruiz, J. M. (2013). Iodine effects on phenolic metabolism in lettuce plants under salt stress. Journal of Agricultural and Food Chemistry, 61(11), 2591–2596, doi: 10.1021/jf303917n.
  4. Blasco, B., Rios, J. J., Cervilla, L. M., Sánchez-Rodrigez, E., Ruiz, J. M., and Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Annals of Applied Biology, 152(3), 289–299, doi: 10.1111/j.1744-7348.2008.00217.x.
  5. Blasco, B., Rios, J. J., Leyva, R., Melgarejo, R., Constán-Aguilar, C., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Romero, L., and Ruiz, J. M. (2011). Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regulation, 65(1), 137–143, doi: 10.1007/s10725-011-9583-0.
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254, doi: 10.1016/0003-2697(76)90527-3.
  7. Bunghez, I. R., Raduly, M., Doncea, S., Aksahin, I., and Ion, R. M. (2011). Lycopene determination in tomatoes by different spectral techniques (UV-VIS, FTIR and HPLC). Digest Journal of Nanomaterials and Biostructures, 6(3), 1349–1356.
  8. Cakmak, I., Prom-U-Thai, C., Guilherme, L. R. G., Rashid, A., Hora, K. H., Yazici, A., Savasli, E., Kalayci, M., Tutus, Y., Phuphong, P., Rizwan, M., Martins, F. A. D., Dinali, G. S., and Ozturk, L. (2017). Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil, 418(1–2), 319–335, doi: 10.1007/s11104-017-3295-9.
  9. Cansev, A., Gulen, H., and Eris, A. (2011). The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Horticulture, Environment and Biotechnology, 52(2), 113–120, doi: 10.1007/s13580-011-0126-4.
  10. Cazzonelli, C. I., and Pogson, B. J. (2010). Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15(5), 266–274, doi: 10.1016/j.tplants.2010.02.003.
  11. Dai, J.-L., Zhu, Y.-G., Zhang, M., and Huang, Y.-Z. (2004). Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biological Trace Element Research, 101(3), 265–276, http://www.ncbi.nlm.nih.gov/pubmed/15564656.
  12. García Osuna, H. T., Mendoza, A. B., Morales, C. R., Rubio, E. M., Star, J. V., and Ruvalcaba, R. M. (2014). Iodine application increased ascorbic acid content and modified the vascular tissue in Opuntia ficus-indica L. Pakistan Journal of Botany, 46(1), 127–134.
  13. Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930, doi: 10.1016/j.plaphy.2010.08.016.
  14. Gonzali, S., Kiferle, C., and Perata, P. (2017). Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 44, 16–26, doi: 10.1016/j.copbio.2016.10.004.
  15. Hageman, R. H., Hodge, E. S., and Mchargue, J. S. (1942). Content and growth of tomato plants. Plant Physiology, 17(2), 465–472.
  16. Halka, M., Smoleń, S., Czernicka, M., Klimekchodacka, M., Pitala, J., and Tutaj, K. (2019). Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiology and Biochemistry, 144, 35–48, doi: 10.1016/j.plaphy.2019.09.028.
  17. Helrich, K. (1990). AOAC. Official methods of analysis. Arlington, VA, USA: Association of Official Analytical Chemists.
  18. Humphrey, O. S., Young, S. D., Bailey, E. H., Crout, N. M. J., Ander, E. L., Hamilton, E. M., and Watts, M. J. (2019). Iodine uptake, storage and translocation mechanisms in spinach (Spinacia oleracea L.). Environmental Geochemistry and Health, 41(5), 2145–2156, doi: 10.1007/s10653-019-00272-z.
  19. Humphrey, O. S., Young, S. D., Bailey, E. H., Crout, N. M. J., Ander, E. L., and Watts, M. J. (2018). Iodine soil dynamics and methods of measurement: A review. Environmental Science: Processes and Impacts, 20(2), 288–310, doi: 10.1039/c7em00491e.
  20. Kabata-Pendias, A., and Pendias, H. (2011). Trace elements in soils and plants. Boca Raton, USA: CRC Press.
  21. Kato, S., Wachi, T., Yoshihira, K., Nakagawa, T., Ishikawa, A., Takagi, D., Tezuka, A., Yoshida, H., Yoshida, S., Sekimoto, H., and Takahashi, M. (2013). Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Frontiers in Plant Science, 4(3), 227, doi: 10.3389/fpls.2013.00227.
  22. Kerchev, P., Van Der Meer, T., Sujeeth, N., Verlee, A., Stevens, C. V., Van Breusegem, F., and Gechev, T. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances, 40, 107503, doi: 10.1016/j.biotechadv.2019.107503.
  23. Kiferle, C., Ascrizzi, R., Martinelli, M., Gonzali, S., Mariotti, L., Pistelli, L., Flamini, G., and Perata, P. (2020). Effect of iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS ONE, 15(2), 1–23, doi: 10.1371/journal.pone.0229016.
  24. Kiferle, C., Martinelli, M., Salzano, A. M., Gonzali, S., Beltrami, S., Salvadori, P. A., Hora, K., Holwerda, H. T., Scaloni, A., and Perata, P. (2021). Evidences for a nutritional role of iodine in plants. Frontiers in Plant Science, 12, 616868, doi: 10.3389/fpls.2021.616868.
  25. Landini, M., Gonzali, S., and Perata, P. (2011). Iodine biofortification in tomato. Journal of Plant Nutrition and Soil Science, 174(3), 480–486, doi: 10.1002/jpln.201000395.
  26. Lawson, P. G., Daum, D., Czauderna, R., Meuser, H., and Härtling, J. W. (2015). Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Frontiers in Plant Science, 6, 450, doi: 10.3389/fpls.2015.00450.
  27. Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M., and Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195–202, doi: 10.1016/j.plantsci.2011.05.007.
  28. Liu, L., Wei, J., Zhang, M., Zhang, L., Li, C., and Wang, Q. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany, 63(16), 5751–5762, doi: 10.1093/jxb/ers224.
  29. Lo Piccolo, E., Ceccanti, C., Guidi, L., and Landi, M. (2021). Role of beneficial elements in plants: Implications for the photosynthetic process. Photosynthetica, 59(2), 349–360, doi: 10.32615/ps.2021.032.
  30. Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., and Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45, doi: 10.1016/J.JCS.2016.11.004.
  31. Martínez-Damián, M. T., Cano-Hernández, R., Del Carmen Moreno-Pérez, E., Del Castillo, F. S., and Cruz-Álvarez, O. (2018). Effect of preharvest growth bioregulators on physicochemical quality of saladette tomato. Revista Chapingo, Serie Horticultura, 25(1), 29–43, doi: 10.5154/r.rchsh.2018.06.013.
  32. Medrano, J., Nohemi, E., Mart, R., Alfredo, W., Mendoza, A. B., and Mart, P. (2021). Enhancement to salt stress tolerance in strawberry plants by iodine products application. Agronomy, 11(3), 602, doi: 10.3390/agronomy11030602.
  33. Medrano-Macías, J, and Leija-Martínez, P. (2016b). Effect of iodine application on antioxidants in tomato seedlings. Revista Chapingo, 22(2), 133–143, doi: 10.5154/r.rchsh.2015.12.025.
  34. Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A., and Benavides-Mendoza, A. (2016a). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7, 1146, doi: 10.3389/fpls.2016.01146.
  35. Moreno, F. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión / Plant responses to water deficit stress. A review. Agronomía Colombiana, 27(2), 179–191.
  36. Muller, L. (1961). Device for varying the frequency of a vibration exciter. US Patent 3,004,389, https://www.google.com/patents/US3004389.
  37. Nakano, Y., and Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28(1), 131–140, doi: 10.1093/oxfordjournals.pcp.a077268.
  38. Novo, L. A. B., Covelo, E. F., and González, L. (2014). Effect of salinity on zinc uptake by Brassica juncea. International Journal of Phytoremediation, 16(7–8), 704–718, doi: 10.1080/15226514.2013.856844.
  39. Peterson, G. L. (1978). A simplified method for analysis of inorganic phosphate in the presence of interfering substances. Analytical Biochemistry, 84(1), 164–172, doi: 10.1016/0003-2697(78)90495-5.
  40. Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., Bastos, C. E. A., and Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment, 56(12), 584–588.
  41. Sabatino, L., Ntatsi, G., Iapichino, G., D’anna, F., and De Pasqual, C. (2019). Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy, 9(4), 207, doi: 10.3390/agronomy9040207.
  42. Smoleń, S., and Sady, W. (2012). Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Scientia Horticulturae, 143, 176–183, doi: 10.1016/j.scienta.2012.06.006.
  43. Smoleń, S., Sady, W., Rozek, S., Ledwozyw-Smoleń, I., and Strzetelski, P. (2011). Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. Journal of Elementology, 16(2), 275–285, doi: 10.5601/jelem.2011.16.2.11.
  44. Steiner, A. A. (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, 15(2), 134–154, doi: 10.1007/BF01347224.
  45. Suzuki, M., Eda, Y., Ohsawa, S., Kanesaki, Y., Yoshikawa, H., Tanaka, K., Muramatsu, Y., Yoshikawa, J., Sato, I., Fujii, T., and Amachi, S. (2012). Iodide oxidation by a novel multicopper oxidase from the alphaproteobacterium strain Q-1. Applied and Environmental Microbiology, 78(11), 3941–3949, doi: 10.1128/AEM.00084-12.
  46. Thor, K. (2019). Calcium – Nutrient and messenger. Frontiers in Plant Science, 10, 440, doi: 10.3389/fpls.2019.00440.
  47. Turan, M. A., Elkarim, A. H. A., Taban, N., and Taban, S. (2010). Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. African Journal of Agricultural Research, 5 (7), 584–588, doi: 10.5897/AJAR09.677.
  48. Ujowundu, C. O., Ukoha, A. I., Agha, N. C., Nwachukwu, N., and Igwe, K. O. (2009). Iodine biofortification of selected plants using potassium iodide. Nigerian Journal of Biochemistry and Molecular Biology, 24(2), 17–21.
  49. Ullah, S. M., Soja, G., and Gerzabek, M. H. (1993). Ion uptake, osmoregulation and plant-water relations in faba beans (Vicia faba L.) under salt stress. Bodenkultur, 44(4), 291–301.
  50. Urias-Lugo, D. A., Heredia, J. B., Serna-Saldivar, S. O., Muy-Rangel, M. D., and Valdez-Torres, J. B. (2015). Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA – Journal of Food, 13(3), 336–339, doi: 10.1080/19476337.2014.980324.
  51. Venturi, S. (2011). Evolutionary significance of iodine. Current Chemical Biology, 5(3), 155–162, doi: 10.2174/187231311796765012.
  52. Venturi, S., Donati, F. M., Venturi, A., and Venturi, M. (2002). Environmental iodine deficiency: A challenge to the evolution of terrestrial life? Thyroid, 10(8), 727–729, doi: 10.1089/10507250050137851.
  53. Weng, H.-X., Hong, C.-L., Yan, A.-L., Pan, L.-H., Qin, Y.-C., Bao, L.-T., and Xie, L.-L. (2008). Mechanism of iodine uptake by cabbage: Effects of iodine species and where it is stored. Biological Trace Element Research, 125(1), 59–71, doi: 10.1007/s12011-008-8155-2.
  54. White, P. J., and Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511, doi: 10.1093/aob/mcg164.
  55. Xue, T., Hartikainen, H., and Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237(1), 55–61, doi: 10.1023/A:1013369804867.
  56. Yu, Z., and Dahlgren, R. A. (2000). Evaluation of methods for measuring polyphenols in conifer foliage. Journal of Chemical Ecology, 26(9), 2119–2140, doi: 10.1023/A:1005568416040.
DOI: https://doi.org/10.2478/fhort-2022-0003 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 27 - 37
Submitted on: Nov 26, 2021
Accepted on: Jan 24, 2022
Published on: Feb 27, 2022
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 José E. García Fuentes, Biaani F. Herrera Castellanos, Erika N. Rivas Martínez, Willian A. Narváez Ortiz, Adalberto Benavides Mendoza, Julia Medrano Macías, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.