References
- Adina, F., Cecilia, G., Felicia, G., Carmen, D., and Ovidiu, T. (2017). Identification and quantification of phenolic compounds from red currant (Ribes rubrum L.) and raspberries (Rubus idaeus L.). International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 6, 30–37.
- Aneta, W., Jan, O., Magdalena, M., and Joanna, W., (2013). Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. International Journal of Food Science & Technology, 48(4), 715–726.
- Barros, L., Carvalho, A. M., Morais, J. S., and Ferreira, I. C. F. R., (2010). Strawberry-tree, blackthorn and rose fruits: Detailed characterization in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120, 247–254.
- Bevilacqua, A. E., and Califano, A. N. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science, 54(4), 1076–1076.
- Bobinaitė, R., Vikelis, P., and Rimantas-Vensutonis, P. (2012). Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132, 1495–1501.
- Boehning, A. L., Essien, S. A., Underwood, E. L., Dash, P. K., and Boehning, D. (2018) Cell type-dependent effects of ellagic acid on cellular metabolism, Biomedicine & Pharmacotherapy, 106, 411–418.
- Borges, G., Degeneve, A., Mullen, W., and Crozier, A. (2010). Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries, Journal of Agricultural and Food Chemistry, 58, 3901–3909.
- Buřičová, L., Andjelkovic, M., Cermakova, A., Reblova, Z., Jurcek, O., Kolehmainen, E., and Kvasnicka, F. (2011). Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves. Czech Journal of Food Sciences, 29(2), 181–189.
- Cemeroglu, B. (2007). Food analysis. Food Technology Society Publication, 34, 168–171.
- Chanyotha, A., Techametheekul, K. W., and Setthayanond, J. (2019). Development and antioxidant activity analysis of bio-cellulose containing Indian gooseberry extract. International Journal of Advanced Research and Technology, 8(3S).
- Chiang, C. J., Kadouh, H., and Zhou, K. (2013). Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT-Food Science and Technology, 51(2), 417–422.
- Daniel, E. M., Krupnick, A. S., Heur, Y. H., Blinzler, J. A., Nims, R. W., and Stoner, G. D. (1989). Extraction, stability and quantitation of ellagic acid in various fruits and nuts. The Journal of Food Composition and Analysis, 2(4), 338–349.
- Geçer, M. K., Akin, M., Gundogdu, M., Eyduran, S. P., Ercisli, S., and Eyduran, E. (2016). Organic acids, sugars, phenolic compounds, and some horticultural characteristics of black and white mulberry accessions from Eastern Anatolia. Canadian Journal of Plant Science, 96, 27–33.
- Gerçekçioğlu, R., Bayazit, S., Edizer, Y., and Çekic, Ç. (2009). Performance of some currant (Ribes ssp.) varieties in Tokat ecology. III. National Grape Fruits Symposium, 308–313, Kahramanmaraş.
- Gevrenova, R., Badjakov, I., Nikolovac, M., and Doichinova, I. (2013). Phenolic derivatives in raspberry (Rubus L.) germplasm collection in Bulgaria. Biochemical Systematics and Ecology, 50, 419–427.
- Giovanelli, G., Brambilla, A., Rizzolo, A., and Sinelli, N. (2012). Effects of blanching pre-treatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.). Food Research International. 49, 263–271.
- Giusti, M. M., and Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry, 10(1), F1.2.1–F1.2.13.
- Gudej, J., and Tomczyk, M. (2004). Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Archives of Pharmacal Research, 27(11), 1114–1119.
- Gulcin, I., Topal, F., Çakmakci, R., Bilsel, M., Goren, A. C., and Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585–C593.
- Gündeşli, M. A., Korkmaz, N., and Okatan, V. (2019). Polyphenol content and antioxidant capacity of berries: A review. International Journal of Agriculture, Forestr y and Life Sciences, 3(2), 350–361.
- Gundoğdu, M., Kan, T., and Canan, I. (2016). Bioactive and antioxidant characteristics of blackberry cultivars from East Anatolia. Turkish Journal of Agriculture and Forestry, 40, 344–351.
- Kostecka-Gugała, A., Ledwożyw-Smoleń, I., Augustynowicz, J., Wyżgolik, G., Kruczek, M., and Kaszycki, P. (2015). Antioxidant properties of fruits of raspberry and blackberry grown in Central Europe. Open Chemistry, 13, 1313–1325.
- Laczkó-Zöldi, E., Komlósi, A., Ülke, T., Fogaras, E., Croitoru, M., Fülöp, I., Domokos, E., Ştefănescu, R., and Varga, E. (2018). Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. Acta Biologica Hungarica, 69(2), 156–169.
- Laleh, G. H., Frydoonfar, H., Heidary, R., Jameei, R., and Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pakistan Journal of Nutrition, 5(1), 90–92.
- Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., and Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102(3), 771–776.
- Liao, J., Zang, J., Yuan, F., Liu, S., Zhang, Y., Li, H., Piao, Z., and Li, H. (2015). Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis. Journal of the Science of Food and Agriculture, 96, 3213–3219.
- Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., and Veberic, R. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 77(10), C1064–C1070.
- Narváez-Cuenca, C. E., Mateus-Gómez, A., and Restreposánchez, L. P. (2014). Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. Gronomía Colomia, 32(2), 232–237.
- Okatan, V. (2016). The effects of different growing systems on the yield and qualit y of currant cultivation (Ph.D. thesis). Institute of Science, Süleyman Demirel University, Turkey.
- Okatan, V. (2018). Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey. Folia Horticulturae, 30(1), 93–101.
- Okatan, V., and Çolak, A. M. (2019). Chemical and phytochemicals content of barberry (Berberis vulgaris L.) fruit genotypes from Sivasli district of Usak province of western Turkey. Pakistan Journal of Botany, 51(1), 165–170.
- Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A., and Diamantidis, G. R. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chemistry, 102, 777–783.
- Pelc, M., Przybył, J. L., Kosakowska, O., Szalacha, E., Szymborska, I., and Węglarz, Z. (2009). Genetic and chemical variability of wild red raspberry (Rubus idaeus L.) growing in Poland. Acta Horticulturae, 860, 123–127.
- Pereira, C. C., Da-Silva, E. N., De-Souza, A. O., Vieira, M. A., Ribeiro, A. S., and Cadore, S. (2018). Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. Journal of Food Composition and Analysis, 68, 73–78.
- Proteggente, A. R., Pannala, A. S., Paganga, G., Buren, L. V., Wagner, E., Wiseman, S., and Riceevans, C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217–233.
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.
- Rodriguez-Delgado, M. A., Malovana, S., Perez, J. P., Borges, T., and Garcia-Montelongo, F. J. (2001). Separation of phenolic compounds by high-per-formance liquid chromatography with absorbance and fluorimetric detection. Journal of Chromatography, 912, 249–257.
- Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., and Bobinas, C. (2005). Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8–9), 867–871.
- Şar, S. (2011). The analysis of the use of certain berries from the perspective of pharmacy and history of medicine, Lokman Hekim Journal, 1(2), 1–6.
- Villano, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., and Garcíaparrilla, M. C. (2007). Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71(1), 230–235.
- Wada, L., and Ou, B. (2002). Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agricultural and Food Chemistry, 50(12), 3495–3500.
- Wang, S. Y., and Lin, H. S. (2002). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48, 140–146.
- Zheng, L., Zhou, X., Ma, Y., and Guo, M. (2019). Genome-wide identification and characterization of TCP family genes associated with flower and fruit development in Fragaria vesca. Pakistan Journal of Botany, 51(2), 513–519.
- Zia-Ul-Haq, M., Riaz, M., De Feo, V., Hawa, Z. E., and Jaafar Moga, M. (2014). Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules, 19, 10998–11029.