Have a personal or library account? Click to login
Iodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide Cover

Iodosalicylates and iodobenzoates supplied to tomato plants affect the antioxidative and sugar metabolism differently than potassium iodide

Open Access
|Dec 2019

References

  1. Akram N.A., Shafiq F., Ashraf M., 2017. Ascorbic acid – a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant. Sci. 8, 613.10.3389/fpls.2017.00613
  2. Beers R.F., Sizer I.W., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195(1), 133-140.10.1016/S0021-9258(19)50881-X
  3. Bolouri-Moghaddam M.R., Le Roy K., Xiang L., Rolland F., Van Den Ende W., 2010. Sugar signaling and antioxidant network connections in plant cells. FEBS J. 277, 2023-2037.10.1111/j.1742-4658.2010.07633.x20412056
  4. Blasco B., Rios J.J., Cervilla L.M., Sánchez-Rodrigez E., Ruiz J.M., Romero L., 2008. Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann. Appl. Biol. 152, 289-299.10.1111/j.1744-7348.2008.00217.x
  5. Blasco B., Ríos J.J., Leyva R., Cervilla L.M., Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Rosales M.A., Ruiz J.M., Romero L., 2011. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace. Elem. Res. 142, 831-842.10.1007/s12011-010-8816-920838926
  6. Chen Z., Klessig D.F., 1991. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc. Natl. Acad. Sci. USA 88, 8179-8183.10.1073/pnas.88.18.81795247011607212
  7. Chen Z., Ricigliano J.W., Klessig D.F., 1993. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. USA 90, 9533-9537.10.1073/pnas.90.20.9533476038415736
  8. Conrath U., Chen Z., Ricigliano J.R., Klessig D.F., 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA 92, 7143-7147.10.1073/pnas.92.16.71434129511607566
  9. Deutsch J.C., 1997. Ascorbic and dehydroascorbic acid interconversion without net oxidation or reduction. Anal. Biochem. A247, 58-62.10.1006/abio.1997.20359126371
  10. De Pinto M.C., De Gara L., 2004. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J. Exp. Bot. 55, 2559-2569.10.1093/jxb/erh25315475379
  11. Del Rio L.A., Sandalio L.M., Corpas F.J., Barroso J.B., 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant. Physiol. 141, 330-335.10.1104/pp.106.078204
  12. Durner J., Klessig D.F., 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. USA 92, 11312-11316.10.1073/pnas.92.24.11312
  13. Dresler S., Maksymiec W., 2013. Capillary zone electrophoresis for determination of reduced and oxidised ascorbate and glutathione in roots and leaf segments of Zea mays plants exposed to Cd and Cu. Acta. Sci. Pol. Hortorum Cultus 12, 143-155.
  14. Eraslan F., Inal A., Gunes A., Alpaslan M., 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. 113, 120-128.10.1016/j.scienta.2007.03.012
  15. Fukumoto L.R., Mazza G., 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food. Chem. 48(8), 3597-3604.10.1021/jf000220w
  16. Gill S.S., Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Phisiol. Biochem. 48(12), 909-930.10.1016/j.plaphy.2010.08.016
  17. Golubkina N., Kekina H., Caruso G., 2018. Yield, quality and antioxidant properties of Indian Mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants 7(4), E80.10.3390/plants7040080
  18. Gonzali S., Kiferle C., Perata P., 2017. Iodine biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 44, 16-26.10.1016/j.copbio.2016.10.004
  19. Gupta A.K., Kaur N., 2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 30, 761-776.10.1007/BF02703574
  20. Gupta N., Bajpai M., Majumdar R., Mishra P., 2015. Response of iodine on antioxidant levels of Glycine max L. grown under Cd2+ stress. Adv. Biol. Res. 9, 40-48.
  21. Halka M., Klimek-Chodacka M., Smoleń S., Baranski R., Ledwożyw-Smoleń I., Sady W., 2018. Organic iodine supply affects tomato plants differently than inorganic iodine. Physiol. Plant. 164(3), 290-306.10.1111/ppl.12733
  22. Hawrylak-Nowak B., 2008. Effect of selenium on selected macronutrients in maize plants. J. Elementol. 13(4), 513-519.
  23. Hilal M., Parrado M.F., Rosa M., Gallardo M., Orce L., Massa E.D., González J.A., Prado F.E., 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem. Photobiol. 79, 205-210.10.1562/0031-8655(2004)079<;0205:ELDIQC>2.0.CO;2
  24. Iba K., 2002. Acclimation responses to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant. Biol. 53, 225-245.10.1146/annurev.arplant.53.100201.160729
  25. Journet E.P., Bligny R., Douce R., 1986. Biochemical changes during sucrose deprivation in higher plant cells. J. Biol. Chem. 261, 3193-3199.10.1016/S0021-9258(17)35767-8
  26. Kapusta-Duch J., Bieżanowska- Kopeć R., Smoleń S., Pysz M., Kopeć A., Piątkowska E., Rakoczy R., Koronowicz A., Skoczylas Ł., Leszczyńska T., 2017. The effect of preliminary processing and different methods of cooking on the iodine content and selected antioxidative properties of carrot (Daucus carota L.) biofortified with (potassium) iodine. Folia. Hort. 29(1), 11-24.10.1515/fhort-2017-0002
  27. Kiferle C., Gonzali S., Holwerda H.T., Ibaceta R.R., Perata P., 2013. Tomato fruits: a good target for iodine biofortification. Front. Plant. Sci. 4, 205.10.3389/fpls.2013.00205
  28. König J., Baier M., Horling F., Kahmann U., Harris G., Schürmann P., Dietz K.-J., 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of PET. Proc. Natl. Acad. Sci. USA 99, 5738-5743.10.1073/pnas.072644999
  29. Kühn C., Barker L., Burkle L., Frommer W.B., 1999. Update on sucrose transport in higher plants. J. Exp. Bot. 50, 935-953.10.1093/jxb/50.Special_Issue.935
  30. Landini M., Gonzali S., Perata P., 2011. Iodine biofortification in tomato. J. Plant. Nutr. Soil. Sci. 174, 480-486.10.1002/jpln.201000395
  31. Leja M., Kamińska I., Kramer M., Maksylewicz-Kaul A., Kammerer D., Carle R., Baranski R., 2013. The content of phenolic compounds and radical scavenging activity varies with carrot origin and root colour. Plant. Foods. Hum. Nutr. 68, 163-170.10.1007/s11130-013-0351-3
  32. Lin J.S., Wang G.X., 2002. Doubled CO2 could improve the drought tolerance better in sensitive cultivars than in tolerant cultivars in spring wheat. Plant. Sci. 163(3) 627-637.10.1016/S0168-9452(02)00173-5
  33. Lunn J.E., Macrae E., 2003. New complexities in the synthesis of sucrose. Curr. Opin. Plant. Biol. 6, 208-21410.1016/S1369-5266(03)00033-5
  34. Martens S., Preuss A., Matern U., 2010. Multi-functional flavonoid dioxygenases : flavonols and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71, 1040-1049.10.1016/j.phytochem.2010.04.01620457455
  35. Medrano-Macías J., Leija-Martínez P., González-Morales S., Juárez-Maldonado A., Benavides-Mendoza A., 2016. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant. Sci. 7, 1146.10.3389/fpls.2016.01146499378727602033
  36. Melse-Boonstra A., Jaiswal N., 2010. Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best. Pract. Res. Clin. Endocrinol. Metab. 24, 29-38.10.1016/j.beem.2009.09.00220172468
  37. Mottiar Y., 2013. Iodine biofortification through plant biotechnology. Nutrition. 29, 1431.10.1016/j.nut.2013.04.00923948340
  38. Nakano Y., Asada K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22(5), 867-880.
  39. Navrot N., Rouhier N., Gelhaye E., Jacquot J.P., 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129, 185-195.10.1111/j.1399-3054.2006.00777.x
  40. Onsa G.H., Bin Saari N., Selamat J., Bakar J., 2004. Purification and characterization of membrane-bound peroxidases from Metroxylon sagu. Food. Chem. 85, 365-376.10.1016/j.foodchem.2003.07.013
  41. PN-EN15111, 2008. Food stuffs–Determination of Trace Elements–Determination of Iodine by ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Polish Committee of Standardization (in Polish), Warsaw.
  42. Randihr R., Lin Y.T., Shetty K., 2004. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia. Pac. J. Clin. Nutr. 13, 295-307.
  43. Reuveni R., Shimoni M., Karchi Z., Kuc J., 1992. Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology. 82(7), 749-753.10.1094/Phyto-82-749
  44. Sady W., Smoleń S., Ledwożyw-Smoleń I., 2014. Methods of biofortification of vegetables with iodine in hydroponic cultures. Patent application no. P.410806 – Polish Patent Office 30 XII 2014.
  45. Sikora E., Cieślik E., Leszczyńska T., Filipiak-Florkiewicz A., Pisulewski P.M., 2008. The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food. Chem. 107, 55-59.10.1016/j.foodchem.2007.07.023
  46. Shim I.-S., Momose Y., Yamamoto A., Kim D.-W., Usui K., 2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. J. Plant. Growth. Regul. 39, 285-292.10.1023/A:1022861312375
  47. Smirnoff N., Wheeler G.L., 2000. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 35, 291-314.10.1080/1040923000898416611005203
  48. Smoleń S., Wierzbińska J., Sady W., Kołton A., Wiszniewska A., Liszka-Skoczylas M., 2015. Iodine biofortification with additional application of salicyli acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci. Hortic. 188, 89-96.10.1016/j.scienta.2015.03.023
  49. Smoleń S., Kowalska I., Czernicka M., Halka M., Kęska K., Sady W., 2016. Iodine and selenium biofortification with additional application of salicylic acid affects yield, selected molecular parameters and chemical composition of lettuce plants (Lactuca sativa L. var. capitata). Front. Plant. Sci. 7, 1553.10.3389/fpls.2016.01553
  50. Smoleń S., Ledwożyw-Smoleń I., Halka M., Sady W., Kováčik P., 2017. The absorption of iodine from 5-iodosalicylic acid by hydroponically grown lettuce. Sci. Hortic. 225, 716-725.10.1016/j.scienta.2017.08.009
  51. Sofo A., Scopa A., Nuzzaci M., Vitti A., 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 16(6), 13561-13578.10.3390/ijms160613561
  52. Tripathy B.C., Oelmüller R., 2012. Reactive oxygen species generation and signaling in plants. Plant. Signal. Behav. 7, 1621-1633.10.4161/psb.22455
  53. Van Den Ende W., Valluru R., 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9-18.10.1093/jxb/ern297
  54. Walker S.P., Wachs T.D., Gardner J.M., Lozoff B., Wasserman G.A., Pollitt E., Carter J.A., 2007. Child development: risk factors for adverse outcomes in developing countries. Lancet. 369, 145-157.10.1016/S0140-6736(07)60076-2
  55. Waterborg J.H., 2002. The Lowry method for protein quantitation. In: The Protein Protocols Handbook. J.M. Walker (Eds), Humana Press Inc, Totowa, New Jersey, USA, 7-10.10.1385/1-59259-169-8:7
  56. Welinder K.G., 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388-393.10.1016/0959-440X(92)90230-5
  57. Wheeler G.L., Jones M.A., Smirnoff N., 1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365-369.10.1038/307289620799
  58. WHO, 2014. Salt reduction and iodine fortification strategies in public health. Report of a Joint Technical Meeting Convened by World Health Organization and The Global Health in Collaboration in the International Council for the control of Iodine deficiency disorders Global Network, Geneva.
  59. Yamada H., Sugahara M., Kosaka H., Katayama A., Takahashi K., Yonebayashi K., 1996. Determination of total and water soluble iodine in soil by high performance liquid chromatography. Soil Sci. Plant. Nutr. 42, 367-374.10.1080/00380768.1996.10416633
  60. Zamocky M., Furtmüller P.G., Obinger C., 2008. Evolution of catalases from bacteria to humans. Antioxid. Redox. Signal. 10, 1527-1548.10.1089/ars.2008.2046295918618498226
  61. Zhang Y., Butelli E., Martin C., 2014. Engeneering anthocyanin biosynthesis in plants. Curr. Opin. Plant. Biol. 19, 81-90.10.1016/j.pbi.2014.05.01124907528
  62. Zhao Y.Q., Zheng J.P., Yang M.W., Yang G.D., Wu Y.N., Fu F.F., 2011. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 84, 983-988.10.1016/j.talanta.2011.03.00421482313
  63. Zimmermann M.B., 2011. The role of iodine in human growth and development. Semin. Cell. Dev. Biol. 22, 645-652.10.1016/j.semcdb.2011.07.00921802524
DOI: https://doi.org/10.2478/fhort-2019-0031 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 385 - 400
Submitted on: May 13, 2019
|
Accepted on: Sep 10, 2019
|
Published on: Dec 26, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Mariya Halka, Sylwester Smoleń, Iwona Ledwożyw-Smoleń, Włodzimierz Sady, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.