Have a personal or library account? Click to login
Responses of tomato (Solanum lycopersicum L.) plants to iron deficiency in the root zone Cover

Responses of tomato (Solanum lycopersicum L.) plants to iron deficiency in the root zone

Open Access
|Jun 2019

References

  1. Abadía J., Abadía A., 1993. Iron and pigments. In: Iron Chelation in Plants and Soil Microorganisms. L.L. Barton and B.C. Hemming (Eds), Academic Press, San Diego, USA, 327-343.10.1016/B978-0-12-079870-4.50020-X
  2. Álvarez-Fernández A., Melgar J.C, Abadía J., Abadía A., 2011. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environ. Exper. Bot. 71, 280-286.10.1016/j.envexpbot.2010.12.012
  3. Berlyn G.P., Miksche J.P., 1976. Botanical Microtechnique and Cytochemistry. Ames Iowa: Iowa State University Press, USA.10.2307/2418781
  4. Bienfait H.F., Bino R.J., van der Blick A.M., Duivenvoorden J.F., Fontaine J.M., 1983. Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol. Plant. 59, 196-202.10.1111/j.1399-3054.1983.tb00757.x
  5. Boamponsem G.A., Leung D.W.M., Lister C., 2017. Insights into resistance to Fe deficiency stress from a comparative study of in vitro-selected novel Fe-efficient and Fe-inefficient potato plants. Front. Plant Sci. 8, 1581.10.3389/fpls.2017.01581560141528955367
  6. Correia P.J., Pestana M., Martins-Loução M.A., 2003. Nutrient deficiencies in carob (Ceratonia siliqua L.) grown in solution culture. J. Hortic. Sci. Biotechnol. 78, 847-852.10.1080/14620316.2003.11511708
  7. Dasgan H.Y., Römheld V., Cakmak I., Abak K., 2002. Physiological root responses of iron deficiency susceptible and tolerant tomato genotypes and their reciprocal F1 hybrids. Plant Soil 241, 97-104.10.1023/A:1016060710288
  8. Giehl R.F.H., Lima J.E., von Wirén N., 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24, 33-49.10.1105/tpc.111.092973328957822234997
  9. Graças J.P., Ruiz-Romero R., Figueiredo L.D., Mattiello L., Peres, L.E.P., Vitorello V.A., 2016. Root growth restraint can be an acclimatory response to low pH and is associated with reduced cell mortality: a possible role of class III peroxidases and NADPH oxidases. Plant Biol. 18, 658-668.10.1111/plb.1244326891589
  10. Guerinot M.L., Yi Y., 1994. Iron: nutritious, noxious, and not readily available. Plant Physiol. 104, 815-820.10.1104/pp.104.3.81516067712232127
  11. Hindt M.N., Guerinot M.L., 2012. Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 1823, 1521-1530.10.1016/j.bbamcr.2012.03.010
  12. Jin C.W., Du S.T., Shamsi I.H., Luo B.F., Lin X.Y., 2011. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J. Exp. Bot. 62, 3875-3884.10.1093/jxb/err078
  13. Kawahara Y., Kitamura Y., 2015. Changes in cell size and number and in rhizodermal development contribute to root tip swelling of Hyoscyamus albus roots subjected to iron deficiency. Plant Physiol. Biochem. 89, 107-111.10.1016/j.plaphy.2015.02.018
  14. Kobayashi T., Nishizawa N.K., 2014. Iron sensors and signals in response to iron deficiency. Plant Sci. 224, 36-43.10.1016/j.plantsci.2014.04.002
  15. Landsberg E-C., 1995. Transfer cells formation in sugar beet roots induced by latent Fe deficiency. In: Iron Nutrition in Soils and Plants. J. Abadía. (Ed.), Springer, Dordrecht, Netherlands, 67-75.10.1007/978-94-011-0503-3_10
  16. Li Z., Phillip D., Neuhäuser B., Schulze W.X., Ludewig U., 2015. Protein dynamics in young maize root hairs in response to macro and micronutrient deprivation. J. Proteome Res. 14, 3362-3371.10.1021/acs.jproteome.5b00399
  17. Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382.10.1016/0076-6879(87)48036-1
  18. Lucena C., Romera F.J., García M.J., Alcántara E., Pérez-Vicente R., 2015. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front. Plant Sci. 6, 1-16.10.3389/fpls.2015.01056466123626640474
  19. Morales F., Abadía A., Abadía J., 1990. Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol. 94, 607-613.10.1104/pp.94.2.607107727516667755
  20. Paolacci A.R., Celletti S., Catarcione G., Hawkesford M.J., Astolfi S., Ciaffi M., 2014. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. J. Int. Plant Biol. 56, 88-100.10.1111/jipb.1211024119307
  21. Pestana M., Correia P.J., Saavedra T., Gama F., Abadía A., de Varennes A., 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant Physiol. Biochem. 53, 1-5.10.1016/j.plaphy.2012.01.00122285409
  22. Pestana M., David M., de Varennes A., Abadía J., Faria E.A., 2001. Responses of ‘Newhall’ orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. J. Plant Nutr. 24, 1609-1620.10.1081/PLN-100106024
  23. Pestana M., Faria E.A., De Varennes A., 2004. Lime-induced iron chlorosis in fruit trees. In: Production Practices and Quality Assessment of Food Crops. R. Dris and S.M. Jain (Eds), Springer, Dordrecht, Netherlands, 171-215.10.1007/1-4020-2536-X_7
  24. Romera F.J., Alcántara E., 2004. Ethylene involvement in the regulation of Fe-deficiency stress responses by Strategy I plants. Funct. Plant Biol. 31, 315-328.10.1071/FP0316532688902
  25. Römheld V., Marschner H., 1986. Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutr. 2, 155-204.
  26. Santi S., Schmidt W., 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 183, 1072-1084.10.1111/j.1469-8137.2009.02908.x19549134
  27. Schmidt W., 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141, 1-26.10.1046/j.1469-8137.1999.00331.x
  28. Sun H., Feng F., Liu J., Zhao Q., 2017. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Front. Plant Sci. 8, 2169.10.3389/fpls.2017.02169574367929312409
  29. Von Wirén N., Bennett M.J., 2016. Crosstalk between gibberellin signalling and iron uptake in plants: an Achilles’ Heel for modern cereal varieries? Dev. Cell 37, 110-111.10.1016/j.devcel.2016.04.00327093079
  30. Wu T., Zhang H-T., Wang Y., Jia W-S., Xu X-F., Zhang X-Z., et al., 2012. Induction of root Fe (III) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. J. Exp. Bot. 63, 859-870.10.1093/jxb/err314325468622058407
  31. Zuchi S., Cesco S., Gottardi S., Pinton R., Römheld V., Astolfi S., 2011. The rot-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation. Plant Physiol. Biochem. 49, 506-512.10.1016/j.plaphy.2010.12.00521236691
  32. Zuchi S., Cesco S., Varanini Z., Pinton R., Astolfi S., 2009. Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta 230, 85-94.10.1007/s00425-009-0919-119350269
DOI: https://doi.org/10.2478/fhort-2019-0017 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 223 - 234
Submitted on: Sep 6, 2018
|
Accepted on: Jan 24, 2019
|
Published on: Jun 30, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 María Rocío Jiménez, Laura Casanova, Teresa Saavedra, Florinda Gama, María Paz Suárez, Pedro José Correia, Maribela Pestana, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.