References
- Baldwin, A., Egnotovich, M., Ford, M., Platt, W. 2001. Regeneration in fringe mangrowe forests damaged by Hurricane Andrew. Plant Ecology, 157 (2), 151–164. DOI: 10.1023/A:1013941304875.
- Bartuška, M., Pawlett, M., Frouz, J. 2015. Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition. Catena, 131, 92–98. DOI: 10.1016/j.catena.2015.03.019.00380768.2018.1545517.
- Blennow, K., Anderson, M., Bergh, J., Sallnäs, O., Olofsson, E. 2010. Potential climate change impacts on the probability of wind damage in a south Sweden forest. Climatic Change, 99 (1), 261–278. DOI: 10.1007/s10584-009-9698-8.
- Błońska, E., Januszek, K. 2010. Wpływ składu gatunkowego drzewostanów na aktywność enzymatyczną i właściwości fizykochemiczne gleb leśnych. Roczniki Gleboznawcze, 61 (2), 5–14.
- Błońska, E., Lasota, J., Piaszczyk, W. 2018. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition. Soil Science and Plant Nutrition, 65 (1), 100–107. DOI: 10.1080/00380768.2018.1545517.
- Bodlák, L., Křováková, K., Kobesová, M., Brom, J., Štastný, J., Pecharová. 2012. SOC content-An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecological Engineering,. 43, 53–59. DOI: 10.1016/j.ecoleng.2011.07.013.
- Bradford, J.B., Fraver, S., Milo, A.M., D’Amato, A.W., Palik, B., Shinneman, D.J. 2012. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. Forest Ecology and Management, 267, 209–214. DOI: 10.1016/j.foreco.2011.12.010.
- Brady, N.C., Weil, R.R. 2017. The nature and properties of soil. 15th edition. Columbus, Pearson.
- Burzyńska, I. 2013. Migration of inorganic components and organic carbon to ground waters at different use of meadows on mineral soils (in Polish with English summary.) Woda-Środowisko-Obszary Wiejskie. Rozprawy naukowe i monografie. Nr 35. Institute of Technology and Life Sciences, Falenty, Poland.
- Burzyńska, I., Sztabkowski, K. 2023. Leaving deadwood in the forest and the impact on the content of dissolved carbon, nitrogen and phosphorus in the forest soil. Sylwan, 167 (8), 507–520. DOI: 10.26202/sylwan.202367.
- Cardnell, S.A. et al. 2014. Effects of a simulated hurricane disturbance on forest floor microbial communities. Forest Ecology and Managament, 332, 22–31. DOI: 10.1016/j.foreco.2014.07.010.
- Dahl, D., Liu, S., Oeding, J. 2014. The carbon cycle and hurricanes in the United States between 1900 and 2011. Scientific Reports, 4, 5197. DOI:10.1038/srep05197.
- Dell Inc. 2016. Dell Statistica (data analysis software system), version 13. software.dell.com.
- Dmyterko, E., Bruchwald, A. 2020. Ocena szkód spowodowanych przez huragan w sierpniu 2017 roku. Sylwan, 164 (5), 335–364. DOI: 10.26202/sylwan.2019073.
- Dziadowiec, H., Jonczak, J., Czarnecki, A., Kacprowicz, K. 2007. Masa, dynamika i skład chemiczny opadu roślinnego w różnowiekowych plantacjach odmiany uprawnej topoli czarnej – Hybryda 275. Roczniki Gleboznawcze, 58 (3/4), 68–77.
- Filipek, Z. 2008. Szkody w wyniku zjawisk klęskowych na terenie Lasów Państwowych w ostatnich latach. SITLiD. In: Klęski żywiołowe w lasach zagrożeniem dla wielofunkcyjnej gospodarki leśnej. Świat, Warszawa, Polska, 5–13.
- Food and Agriculture Organization of the United Nations. 2020. Global Forest Resources Assessment 2020. Main Report FAO. Available at
https://www.atibt.org/en/news/11217/fao-global-forest-resources-assessment-2020-fra-2020 (access on 10 May 2020). - Fronczak, E., Jabłoński, T., Kołakowski, B., Zachara, T. 2020. Klęski żywiołowe w lasach. Kompendium wiedzy o zdarzeniach klęskowych występujących w polskich lasach. Forest Research Institute, Sękocin Stary, Poland.
- Gardnier, B. et al. 2013. Forthcoming Impacts. Final report to European Commission-DG Environmrnt. European Forest Institute. Available at
https://www.researchgate.net/publication/264836590_Living_with_Storm_Damage_to_Forests_What_Science_Can_Tell_Us . (access on 10 March 2013). - Gustafsson, J.P., Belyazid, S., Mcgivney, E., Stefan, L. 2018. Aluminium and base cation chemistry in dynamic acidification models need for a reappraisal? Soil, 4 (4), 237–250. DOI: 10.5194/soil-4-237-2018.
- Hotta, W. et al. 2020. Recovery and allocation of carbon stocks in boreal forests 64 yeras after catastrophic windthrow and salvage logging in northern Japan. Forest Ecology and Management, 468, 118169. DOI: 10.1016/j.foreco.2020.118169.
- Instytut Meteorologii I Gospoadrki Wodnej. 2021. Mapy klimatu Polski. Warszawa, Polska. Available at
https://klimat.imgw.pl/pl/climate-normals . - ISO 11464:2006 Soil quality. Pretreatment of samples for physico-chemical analyses.
- Jimênez-González, M.A., De la Rosa, J.M., Jimênez-Morillo, N.T., Almendras, G., González-Pérez, J.A., Knicker, H. 2016. Post-fire recovery of soil organic matter in a Cambisol from typical Mediterranen forest in Southwestern Spain. Science of Total Environment, 572, 1414–1421. DOI: 10.1016/j.scitotenv.2016.02.134.
- Jöhnsson, A.M., Harding, S., Bärring, L., Ravn, H.P. 2007. Impact of climate change on the population dynamics of Ips typographus in spulthern Sweden. Agricultural and Forest Meteorology, 146, 70–81. DOI: 10.1016/j.agroformet.2007.05.006.
- Kuś, J. 2015. Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i Raporty IUNG--PIB, 45 (19), 27–53. Available at
https://chrome--extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://iung.pl/wp-content/uploads/2009/10/zesz45.pdf (access on 15 May 2015). - Lasy Państwowe. 2023. Zasoby leśne – Nadleśnictwo Runowo. Available at
https://runowo.torun.lasy.gov.pl/zasoby-lesne (access on 15 May 2023). - Lodge, D.J., Cantrell, S.A., González, G. 2014. Effects of canopy and debris deposition on fungal connectivity, phosphorus movement between litter cohorts and mass loss. Forest Ecology and Management, 332, 11–21. DOI:10.1016/j.foreco.2014.03.002.
- Lugo, A.E. 2008. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecology, 33, 368–398. DOI: 10.1111/j.1442-9993.2008.01894.x.
- Morehouse, K., Johns, T., Kaye, J., Kaye, A. 2008. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Forest Ecology and Management, 255 (7), 2698–2708. DOI: 10.1016/j.foreco.2008.01.050.
- Morimoto, J., Sugiura, M., Morimoto, M., Nakamura, F. 2021. Restoration of natural forests after severe wind disturbance in a cold snowy region with a deer population: implication from 15 years of fields experiments. Frontiers Forests and Global Change, 4, 675475. DOI: 10.3389/ffgc.2021.675475.
- Mroczkowski, W., Stuczyński, T. 2024. Oznaczanie azotu ogólnego w glebach. Available at http:www_bg_utp_edu_plartlab22011oznaczanie20azotu20ogf3lnego20w20glebach%20(3).pdf (access on 20 August 2024).
- Pan, Y. et al. 2011. A large and persistent carbon sink in the world’s forests. Science, 333 (6045), 988–993. DOI: 10.1126/since.1201609.
- Patacca, M. et. al. 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 29 (5), 1359–1376. DOI: 10.1111/gcb.16531.
- Pietrzykowski, M. et al. 2025. The effects disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review. Journal of Forestry Research, 36, 12. DOI: 10.1007/s.11676-024-01807-6.
- Pietsch, S., Doerfler, I., Kraus, D., Thorn, S. 2023. Post-storm management determines early tree species composition and browsing intensity in regenerating beech forest. Forest Ecology and Management, 543, 121–132. DOI: 10.1016/j.foreco.2023.121132.
- PN-EN ISO 10390. 1997. Soil quality. Determination of pH. Warsaw, PKN.
- PN-EN ISO 11260:2018-08. 2018. Soil quality. Determination of effective cation exchange capacity and base saturation level using barium chloride solution. Warsaw, PKN.
- PN-EN ISO 11885. 2009. Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Warsaw, PKN.
- PN-EN ISO 14254:2018-08. 2018. Soil quality. Determination of exchangeable acidity using barium chloride solution as extractant. Warsaw, PKN.
- PN-ISO 10694. 202l. Soil quality. Determination of organic and total carbon dry combustion („elemental analysis”). Warsaw, PKN.
- PN-ISO 11465. 1993. Soil quality. Determination of dry matter and water content on a mass basis. Gravi-metric method. Warsaw, PKN.
- PN-ISO 13878. 2002. Soil quality. Determination of total nitrogen by dry combustion („elemental analysis”). Warsaw, PKN.
- PN-R-04027. 1997. Agricultural chemical analysis of the soil. Determination of hydrolytic acidity in mineral soils. Warsaw, PKN.
- PN-Z-19012:2020-02. 2020. Soil quality. Determination of the granulometric composition of mineral soil material. Laser diffration method. Warsaw, PKN.
- Rasmussen, C. et al. 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137, 297–306. DOI: 10.1007/s10533-018-0424-3.
- Ross, D.S., Matschonat, G., Skyliberg, U. 2008. Cation exchange in forest soils: The need for a new perspective. European Journal of Soil Science, 59 (6), 1141–1159. DOI: 10.1111/j.1365-2389.2008.01069.x.
- Rowley, M.C., Grand, S., Adatte, T., Verrecchia, E.P. 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma, 361, 114065. DOI: 10.1016/j.geoderma.2019.114065.
- Rutledge, B.T., Cannon, J.B., MnIntyre, R.K., Holland, A.M., Jack, S.B. 2021. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. Forest Ecology and Management, 481, 118724. DOI: 10.1016/j.foreco.2020.118724.
- Samec, P., Kučera, A., Tomáŝová, G. 2023. Soil degradation processes linked to long-term forest-type damage. IntechOpen Book Series. Available at
https://library.open/handle/20.500.12657/90511 (access on 23 May 2024). - Seidl, R., Schelhaas, M.J., Lexer, M.J. 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17 (9), 2842–2852. DOI: 10.1111/j.1365-2486.2011.02452.x.
- Suzuki, S.N., Tsunoda, T., Nishimura, N., Morimoto, J., Suzuki, J.I. 2019. Dead wood offsets the reduced live wood carbon stock in forests over 50 years after a stand-replacing wind disturbance. Forest Ecology and Management, 432, 94–101. DOI: 10.1016/j.foreco.2018.08.054.
- Sztabkowski, K. 2019. Właściwości fizyko-chemiczne gleb leśnych i ich zmiany w latach 2007–2017. In: Stan zdrowotny lasów w Polsce w 2018 roku na podstawie badań monitoringowych (ed. J. Wawrzoniak). Forest Research Insitute, Sękocin Stary, Poland, 175–181.
- Williams, C.A., Gu, H., MacLean, R., Masek, J.G., Collatz, G.J. 2016. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects and droughts. Global and Planetary Change, 143, 66–80. DOI: 10.1016/j.gloplacha.2016.06.002.