Have a personal or library account? Click to login
The effects of post-hurricane forest regeneration methods on soil carbon and nutrient content Cover

The effects of post-hurricane forest regeneration methods on soil carbon and nutrient content

Open Access
|Sep 2025

References

  1. Baldwin, A., Egnotovich, M., Ford, M., Platt, W. 2001. Regeneration in fringe mangrowe forests damaged by Hurricane Andrew. Plant Ecology, 157 (2), 151–164. DOI: 10.1023/A:1013941304875.
  2. Bartuška, M., Pawlett, M., Frouz, J. 2015. Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition. Catena, 131, 92–98. DOI: 10.1016/j.catena.2015.03.019.00380768.2018.1545517.
  3. Blennow, K., Anderson, M., Bergh, J., Sallnäs, O., Olofsson, E. 2010. Potential climate change impacts on the probability of wind damage in a south Sweden forest. Climatic Change, 99 (1), 261–278. DOI: 10.1007/s10584-009-9698-8.
  4. Błońska, E., Januszek, K. 2010. Wpływ składu gatunkowego drzewostanów na aktywność enzymatyczną i właściwości fizykochemiczne gleb leśnych. Roczniki Gleboznawcze, 61 (2), 5–14.
  5. Błońska, E., Lasota, J., Piaszczyk, W. 2018. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition. Soil Science and Plant Nutrition, 65 (1), 100–107. DOI: 10.1080/00380768.2018.1545517.
  6. Bodlák, L., Křováková, K., Kobesová, M., Brom, J., Štastný, J., Pecharová. 2012. SOC content-An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecological Engineering,. 43, 53–59. DOI: 10.1016/j.ecoleng.2011.07.013.
  7. Bradford, J.B., Fraver, S., Milo, A.M., D’Amato, A.W., Palik, B., Shinneman, D.J. 2012. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. Forest Ecology and Management, 267, 209–214. DOI: 10.1016/j.foreco.2011.12.010.
  8. Brady, N.C., Weil, R.R. 2017. The nature and properties of soil. 15th edition. Columbus, Pearson.
  9. Burzyńska, I. 2013. Migration of inorganic components and organic carbon to ground waters at different use of meadows on mineral soils (in Polish with English summary.) Woda-Środowisko-Obszary Wiejskie. Rozprawy naukowe i monografie. Nr 35. Institute of Technology and Life Sciences, Falenty, Poland.
  10. Burzyńska, I., Sztabkowski, K. 2023. Leaving deadwood in the forest and the impact on the content of dissolved carbon, nitrogen and phosphorus in the forest soil. Sylwan, 167 (8), 507–520. DOI: 10.26202/sylwan.202367.
  11. Cardnell, S.A. et al. 2014. Effects of a simulated hurricane disturbance on forest floor microbial communities. Forest Ecology and Managament, 332, 22–31. DOI: 10.1016/j.foreco.2014.07.010.
  12. Dahl, D., Liu, S., Oeding, J. 2014. The carbon cycle and hurricanes in the United States between 1900 and 2011. Scientific Reports, 4, 5197. DOI:10.1038/srep05197.
  13. Dell Inc. 2016. Dell Statistica (data analysis software system), version 13. software.dell.com.
  14. Dmyterko, E., Bruchwald, A. 2020. Ocena szkód spowodowanych przez huragan w sierpniu 2017 roku. Sylwan, 164 (5), 335–364. DOI: 10.26202/sylwan.2019073.
  15. Dziadowiec, H., Jonczak, J., Czarnecki, A., Kacprowicz, K. 2007. Masa, dynamika i skład chemiczny opadu roślinnego w różnowiekowych plantacjach odmiany uprawnej topoli czarnej – Hybryda 275. Roczniki Gleboznawcze, 58 (3/4), 68–77.
  16. Filipek, Z. 2008. Szkody w wyniku zjawisk klęskowych na terenie Lasów Państwowych w ostatnich latach. SITLiD. In: Klęski żywiołowe w lasach zagrożeniem dla wielofunkcyjnej gospodarki leśnej. Świat, Warszawa, Polska, 5–13.
  17. Food and Agriculture Organization of the United Nations. 2020. Global Forest Resources Assessment 2020. Main Report FAO. Available at https://www.atibt.org/en/news/11217/fao-global-forest-resources-assessment-2020-fra-2020 (access on 10 May 2020).
  18. Fronczak, E., Jabłoński, T., Kołakowski, B., Zachara, T. 2020. Klęski żywiołowe w lasach. Kompendium wiedzy o zdarzeniach klęskowych występujących w polskich lasach. Forest Research Institute, Sękocin Stary, Poland.
  19. Gardnier, B. et al. 2013. Forthcoming Impacts. Final report to European Commission-DG Environmrnt. European Forest Institute. Available at https://www.researchgate.net/publication/264836590_Living_with_Storm_Damage_to_Forests_What_Science_Can_Tell_Us. (access on 10 March 2013).
  20. Gustafsson, J.P., Belyazid, S., Mcgivney, E., Stefan, L. 2018. Aluminium and base cation chemistry in dynamic acidification models need for a reappraisal? Soil, 4 (4), 237–250. DOI: 10.5194/soil-4-237-2018.
  21. Hotta, W. et al. 2020. Recovery and allocation of carbon stocks in boreal forests 64 yeras after catastrophic windthrow and salvage logging in northern Japan. Forest Ecology and Management, 468, 118169. DOI: 10.1016/j.foreco.2020.118169.
  22. Instytut Meteorologii I Gospoadrki Wodnej. 2021. Mapy klimatu Polski. Warszawa, Polska. Available at https://klimat.imgw.pl/pl/climate-normals.
  23. ISO 11464:2006 Soil quality. Pretreatment of samples for physico-chemical analyses.
  24. Jimênez-González, M.A., De la Rosa, J.M., Jimênez-Morillo, N.T., Almendras, G., González-Pérez, J.A., Knicker, H. 2016. Post-fire recovery of soil organic matter in a Cambisol from typical Mediterranen forest in Southwestern Spain. Science of Total Environment, 572, 1414–1421. DOI: 10.1016/j.scitotenv.2016.02.134.
  25. Jöhnsson, A.M., Harding, S., Bärring, L., Ravn, H.P. 2007. Impact of climate change on the population dynamics of Ips typographus in spulthern Sweden. Agricultural and Forest Meteorology, 146, 70–81. DOI: 10.1016/j.agroformet.2007.05.006.
  26. Kuś, J. 2015. Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i Raporty IUNG--PIB, 45 (19), 27–53. Available at https://chrome--extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://iung.pl/wp-content/uploads/2009/10/zesz45.pdf (access on 15 May 2015).
  27. Lasy Państwowe. 2023. Zasoby leśne – Nadleśnictwo Runowo. Available at https://runowo.torun.lasy.gov.pl/zasoby-lesne (access on 15 May 2023).
  28. Lodge, D.J., Cantrell, S.A., González, G. 2014. Effects of canopy and debris deposition on fungal connectivity, phosphorus movement between litter cohorts and mass loss. Forest Ecology and Management, 332, 11–21. DOI:10.1016/j.foreco.2014.03.002.
  29. Lugo, A.E. 2008. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecology, 33, 368–398. DOI: 10.1111/j.1442-9993.2008.01894.x.
  30. Morehouse, K., Johns, T., Kaye, J., Kaye, A. 2008. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Forest Ecology and Management, 255 (7), 2698–2708. DOI: 10.1016/j.foreco.2008.01.050.
  31. Morimoto, J., Sugiura, M., Morimoto, M., Nakamura, F. 2021. Restoration of natural forests after severe wind disturbance in a cold snowy region with a deer population: implication from 15 years of fields experiments. Frontiers Forests and Global Change, 4, 675475. DOI: 10.3389/ffgc.2021.675475.
  32. Mroczkowski, W., Stuczyński, T. 2024. Oznaczanie azotu ogólnego w glebach. Available at http:www_bg_utp_edu_plartlab22011oznaczanie20azotu20ogf3lnego20w20glebach%20(3).pdf (access on 20 August 2024).
  33. Pan, Y. et al. 2011. A large and persistent carbon sink in the world’s forests. Science, 333 (6045), 988–993. DOI: 10.1126/since.1201609.
  34. Patacca, M. et. al. 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 29 (5), 1359–1376. DOI: 10.1111/gcb.16531.
  35. Pietrzykowski, M. et al. 2025. The effects disturbances and regeneration scenario on soil organic carbon pools and fluxes: a review. Journal of Forestry Research, 36, 12. DOI: 10.1007/s.11676-024-01807-6.
  36. Pietsch, S., Doerfler, I., Kraus, D., Thorn, S. 2023. Post-storm management determines early tree species composition and browsing intensity in regenerating beech forest. Forest Ecology and Management, 543, 121–132. DOI: 10.1016/j.foreco.2023.121132.
  37. PN-EN ISO 10390. 1997. Soil quality. Determination of pH. Warsaw, PKN.
  38. PN-EN ISO 11260:2018-08. 2018. Soil quality. Determination of effective cation exchange capacity and base saturation level using barium chloride solution. Warsaw, PKN.
  39. PN-EN ISO 11885. 2009. Water quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Warsaw, PKN.
  40. PN-EN ISO 14254:2018-08. 2018. Soil quality. Determination of exchangeable acidity using barium chloride solution as extractant. Warsaw, PKN.
  41. PN-ISO 10694. 202l. Soil quality. Determination of organic and total carbon dry combustion („elemental analysis”). Warsaw, PKN.
  42. PN-ISO 11465. 1993. Soil quality. Determination of dry matter and water content on a mass basis. Gravi-metric method. Warsaw, PKN.
  43. PN-ISO 13878. 2002. Soil quality. Determination of total nitrogen by dry combustion („elemental analysis”). Warsaw, PKN.
  44. PN-R-04027. 1997. Agricultural chemical analysis of the soil. Determination of hydrolytic acidity in mineral soils. Warsaw, PKN.
  45. PN-Z-19012:2020-02. 2020. Soil quality. Determination of the granulometric composition of mineral soil material. Laser diffration method. Warsaw, PKN.
  46. Rasmussen, C. et al. 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137, 297–306. DOI: 10.1007/s10533-018-0424-3.
  47. Ross, D.S., Matschonat, G., Skyliberg, U. 2008. Cation exchange in forest soils: The need for a new perspective. European Journal of Soil Science, 59 (6), 1141–1159. DOI: 10.1111/j.1365-2389.2008.01069.x.
  48. Rowley, M.C., Grand, S., Adatte, T., Verrecchia, E.P. 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma, 361, 114065. DOI: 10.1016/j.geoderma.2019.114065.
  49. Rutledge, B.T., Cannon, J.B., MnIntyre, R.K., Holland, A.M., Jack, S.B. 2021. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. Forest Ecology and Management, 481, 118724. DOI: 10.1016/j.foreco.2020.118724.
  50. Samec, P., Kučera, A., Tomáŝová, G. 2023. Soil degradation processes linked to long-term forest-type damage. IntechOpen Book Series. Available at https://library.open/handle/20.500.12657/90511 (access on 23 May 2024).
  51. Seidl, R., Schelhaas, M.J., Lexer, M.J. 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17 (9), 2842–2852. DOI: 10.1111/j.1365-2486.2011.02452.x.
  52. Suzuki, S.N., Tsunoda, T., Nishimura, N., Morimoto, J., Suzuki, J.I. 2019. Dead wood offsets the reduced live wood carbon stock in forests over 50 years after a stand-replacing wind disturbance. Forest Ecology and Management, 432, 94–101. DOI: 10.1016/j.foreco.2018.08.054.
  53. Sztabkowski, K. 2019. Właściwości fizyko-chemiczne gleb leśnych i ich zmiany w latach 2007–2017. In: Stan zdrowotny lasów w Polsce w 2018 roku na podstawie badań monitoringowych (ed. J. Wawrzoniak). Forest Research Insitute, Sękocin Stary, Poland, 175–181.
  54. Williams, C.A., Gu, H., MacLean, R., Masek, J.G., Collatz, G.J. 2016. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects and droughts. Global and Planetary Change, 143, 66–80. DOI: 10.1016/j.gloplacha.2016.06.002.
DOI: https://doi.org/10.2478/ffp-2025-0016 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 208 - 219
Submitted on: May 16, 2025
Accepted on: Jun 25, 2025
Published on: Sep 14, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Irena Burzyńska, Jan Łukaszewicz, Wojciech Gil, Krzysztof Sztabkowski, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.