Have a personal or library account? Click to login
Ecological and trophic determination of the ontogenesis in vitro plants of the genus Betula Cover

Ecological and trophic determination of the ontogenesis in vitro plants of the genus Betula

Open Access
|Sep 2025

References

  1. Abdalla, N. et al. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae, 8 (8), 677. DOI: 10.3390/horticulturae8080677.
  2. Álvarez-López, V., Zappelini, C., Durand, A., Chalot, M. 2020. Pioneer trees of Betula pendula at a red gypsum landfill harbour specific structure and composition of root-associated microbial communities. Science of the Total Environment, 726, 138530. DOI: 10.1016/j.scitotenv.2020.138530.
  3. Amin, M.N., Jaiswal, V.S. 1993. In vitro response of apical bud explants from mature trees of jackfruit (Artocarpus heterophyllus). Plant Cell, Tissue and Organ Culture, 33, 59–65. DOI: 10.1007/BF01997599.
  4. Ashburner, K., McAllister, A. 2013. The genus Betula: a taxonomic revision of birches. Kew Press, London.
  5. Becerra, D., Forero, A., Góngora, G. 2004. Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell, Tissue and Organ Culture 79, 87–90. DOI: 10.1023/B:TICU.0000049440.10767.29.
  6. Beck, P., Caudullo, G., de Rigo, D., Tinner, W. 2016. Betula pendula, Betula pubescens and other birches in Europe: distribution, habitat, usage and threats. In: European atlas of forest tree species (eds. J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T.H. Durrant, A. Mauri). Publication Office of the European Union, Luxembourg, 70–73. Available at https://w3id.org/mtv/FISE-Comm/v01/e010226.
  7. Bertelsen, C. 2020. Betula: Ecology and uses. Nova Science Publishers.
  8. Brand, M., Lineberger, R. 1992. In vitro rejuvenation of Betula (Betulaceae): morphological evaluation. American Journal of Botany, 79 (6), 618–625.
  9. Bridgen, M., Van Houtven, W., Eeckhaut, T. 2018. Plant tissue culture techniques for breeding. In: Ornamental crops: handbook of plant breeding (ed. J. Van Huylenbroeck). Springer, Cham. DOI: 10.1007/978-3-319-90698-0_6.
  10. Cardoso, J., Sheng Gerald, L., Teixeira da Silva, J. 2018. Micropropagation in the twenty-first century. In: Plant cell culture protocols. Methods in molecular biology (eds. V.M. Loyola-Vargas, N. Ochoa-Alejo). Humana Press, New York, 17–46. DOI: 10.1007/978-1-4939-8594-4_2 17–46.
  11. Chen, K. et al. 2024. BpWOX11 promotes adventitious root formation in Betula pendula. BMC Plant Biology, 24, 17. DOI: 10.1186/s12870-023-04703-z.
  12. Chornobrov, O., Chornobrov, O., Zinovieva, M. 2019. Regenerative ability of plant tissue culture in vitro of silver birch (Betula pendula Roth.). Forestry and Landscape Gardening, 15. Available at https://journals.nubip.edu.ua/index.php/lis/article/view/13264.
  13. Chornobrov, O., Melnyk, O., Karpuk, A., Vasylyshyn, R. 2023. Peculiarities of plant adaptation of interspecific hybrid Betula ex vitro. Scientific Horizons, 26 (11), 49–57. DOI: 10.48077/scihor11.2023.49.
  14. Chornobrov, O., Tkachova, O. 2021. Optimization of explants in vitro sterilization protocol of some deciduous tree species. Ukrainian Journal of Forest and Wood Science, 12 (3), 80–86. DOI: 10.31548/forest2021.03.007.
  15. Corredoira, E., Costa, R. 2021. Application of tissue culture in plant reproduction. Forests, 12, 342. DOI: 10.3390/f12030342.
  16. Covelo, P., Vidal, N., Rico, S., Vielba, J.M., Reggiardo, M., Sánchez, C. 2018. Performance of culture lines established in vitro from a monumental birch tree. In: Proceedings of the 5th International Conference on the IUFRO Unit 2.09.02 on Clonal Trees in the Bioeconomy Age: Opportunities and Challenges (eds. J.M. Bonga, Y.S. Park, J.F. Trontin), 10–15 September 2018, Coimbra, 25–33.
  17. Dimitrova, N., Nacheva, L,. Berova, M., Kulpa, D. 2021. Biofertlizer Lumbrical improves the growth and ex vitro acclimatization of micropropagated pear plants. Silva Balcanica, 22, 17–30. DOI: 10.3897/silvabalcanica.22.e57661.
  18. Driver, J., Kuniyuki, A. 1984. In vitro propagati on of Paradox Walnutroot stock. HortScience, 19 (4), 507–509.
  19. Druege, U. et al. 2019. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Annals of Botany, 123 (6), 929–949.
  20. Dubois, H., Verkasalo, E., Claessens, H. 2020. Potential of birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests, 11 (3), 336. DOI: 10.3390/f11030336.
  21. Fedoniuk, T., Pazych, V., Korzh, Z., Melnyk, N., Pitsil, A. 2023. The bioindicative characteristics of the Betula pendula Roth species in the dendrocenoses of the solid household waste landfill’s influence zone. Scientific Horizons, 26 (12), 64–75. DOI: 10.48077/scihor12.2023.64.
  22. Gaidamashvili, M., Benelli, C. 2021. Threatened woody plants of Georgia and micropropagation as a tool for in vitro conservation. Agronomy, 11 (6), 1082. DOI: 10.3390/agronomy11061082.
  23. Gangopadhyay, M., Nandi, S., Roy, S.B. 2017. An efficient ex plant sterilization protocol for reducing microbial contamination of Solanum tuberosum CV. Kufri jyoti for establishing micropropagation in rainy season. Journal of Basic and Applied Sciences, 1, 25.
  24. Gupta, N., Jain, V., Joseph, M.R., Devi, S. 2020. A Review on micropropagation culture method. Asian Journal of Pharmaceutical Research and Development, 8 (1), 86–93. DOI: 10.22270/ajprd.v8i1.653.
  25. Gutiérrez-Nicolás, F., Ravelo, A.G., Zárate, R. 2008. Seed germination and in vitro propagation of Maytenus canariensis through regeneration of adventitious shoots from axillary and apical buds. Biologia plantarum, 52, 173–176. DOI: 10.1007/s10535-008-0038-z.
  26. Hahn, E., Kim, S., Paek, K., Lee, Y. 2000. Growth and acclimatization of Chrysanthemum plantlets using bioreactor and hydroponic culture techniques. In: Transplant Production in the 21st Century (eds. C. Kubota, C. Chun). Springer, Netherlands, 274–278.
  27. Hasegawa, P.M. 1979. In vitro propagation of rose. HortScience, 14 (5), 610–612.
  28. Huhtinen, O., Yahyaoglu, Z. 1974. Das frühe Blühen von aus Kalluskulturen herangezogenen Pflänzchen bei der Birke (Betulu pendula Roth). Silvae Genetica, 23, 32–34.
  29. Ide, Y. 1987. In vitro clonal propagation of mature Japanese cherry birch. Journal of the Japanese Forestry Society, 69, 161–163.
  30. Iliev, I., Besendorfer, V., Peskan, T. 1998. In vitro propagation of Betula pendula ‘Dalecarlica’. In: Progress in botanical research (eds. I. Tsekos, M. Moustakas). Springer, Dordrecht. DOI: 10.1007/978-94-011-5274-7_117.
  31. Iliev, I., Kitin, P., Funada, R. 2001. Morphological and anatomical study on in vitro root formation of silver birch (Betula pendula Roth.). Propagation of Ornamental Plants, 1, 10–19.
  32. Ioannidis, K., Koropouli, P. 2024. Effects of different media and their strengths in in vitro culture of three different Cistus creticus L. populations and their genetic assessment using simple sequence repeat molecular markers. Horticulturae, 10 (1), 104. DOI: 10.3390/horticulturae10010104.
  33. Isah, T. 2023. Explant rejuvenation in the clonal propagation of woody plants. Plant Cell, Tissue and Organ Culture, 154 (3), 209–212. DOI: 10.1007/s11240-023-02520-8.
  34. Jonczak, J. et al. 2020. The influence of birch trees (Betula spp.) on soil environment. Forest Ecology and Management, 477 (1). DOI: 10.1016/j.foreco.2020.118486.
  35. Kolek, F., Plaza, M., Leier-Wirtz, V., Friedmann, A., Traidl-Hoffmann, C., Damialis, A. 2021. Earlier flowering of Betula pendula Roth in Augsburg, Germany, due to higher temperature, NO2 and urbanity, and relationship with Betula spp. pollen season. International Journal of Environmental Research and Public Health, 18 (19), 10325. DOI: 10.3390/ijerph181910325.
  36. Kors, F.T.M. (ed.). 2010/2012. Plant cell and tissue culture. Phytopathology. Biochemicals. Duchefa Biochemie B.V., Haarlem, Netherlands. Available at http://brochure.duchefa-biochemie.com/Duchefa_catalogus_2010_2012/.
  37. Kozai, T., Afreen, F., Zobayed, S. (eds.). 2005. Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Springer Science & Business Media.
  38. Kulus, D., Tymoszuk, A. 2024. Advancements in in vitro technology: A comprehensive exploration of micropropagated plants. Horticulturae, 10 (1), 88. DOI: 10.3390/horticulturae10010088.
  39. Kumar, V., Radha, A., Kumar Chitta, S. In vitro plant regeneration of fig (Ficus carica L. cv. gular) using apical buds from mature trees. Plant Cell Reports, 17, 717–720. DOI: 10.1007/s002990050471.
  40. Kushnir, H., Sarnatska, V. 2005. Microclonal propagation of plants, theory and practice (in Ukrainian). Naukova Dumka, Kyiv.
  41. Lloyd, G., McCown, B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. International Plant Propagator’s Society, 30, 421–427.
  42. Magnusson, V., Castillo, C., Dai, W. 2009. Micropropagation of two elite birch species through shoot proliferation and regeneration. Acta Horticulturae, 812, 223–230. DOI: 10.17660/ActaHortic.2009.812.28.
  43. Mamchur, V. 2017. Selection of sterilizer, introduction to the culture and propagation of plant material of Ailantus altissima (Mill.) Swingle species (in Ukrainian). Scientific Bulletin of UNFU, 27 (4), 56–59. DOI: 10.15421/40270412.
  44. Matskevych, V.V. 2020. Microclonal propagation of plant species in vitro and their postaseptic adaptation (in Ukrainian). Doctoral dissertation in the specialty “breeding and seed production”. Sumy National Agrarian University.
  45. Matskevych, V., Podgaetskyi, A., Filipova, L. 2019. Microclonal propagation of certain plant species (technology protocols): a scientific and practical guide (in Ukrainian). Bila Tserkva National Agrarian University.
  46. Matskevych, V., Yukhnovskyi, V., Kimeichuk, I., Matskevych, O., Shyta, O. 2022. Peculiarities of determining the morphogenesis of plants Corylus avellana L. and Prunus dulcis (Mill.) D.A.Webb. in vitro culture. Folia Forestalia Polonica, Series A – Forestry, 65 (1), 1–14.
  47. McClelland, M. Smith, M., Carothers, Z. 1990. The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell, Tissue and Organ Culture, 23, 115–123. DOI: 10.1007/BF00035831.
  48. Meier-Dinkel, A. 1992. Micropropagation of birches (Betula spp.). In: Biotechnology in agriculture and forestry. Vol. 18. High-tech and micropropagation II (ed. Y.P.S. Bajaj). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-76422-6_3.
  49. Mohammed, A., Arkwazee, H. 2024. Micrografting of Pistacia vera L.: A review. SVU-International Journal of Agricultural Sciences, 6 (1), 61–72. DOI: 10.21608/svuijas.2024.262833.1333.
  50. Murashige, T., Skoog, F.A. 1962. Revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.
  51. Nazari, J., Payamnoor, V., Alizadeh, M. 2013. Optimization of surface sterilization treatments in two birch (Betula sp.) species. Journal of Plant Production Research, 20 (3), 159–168.
  52. Neema, M., Aparna, V., Chandran, K.P. 2022. Contrast analysis recommends flame sterilization for surface depuration in coconut (Cocos nucifera) meristem culture. Current Horticulture, 10 (1), 41–44. DOI: 10.5958/2455-7560.2022.00008.5.
  53. Nguyen, Q., Xiao, Y., Kozai, T. 2020. Photoautotrophic micropropagation. In: Plant factory (eds. T. Kozai, G. Niu, M. Takagaki). Academic Press, 333–346. DOI: 10.1016/B978-0-12-816691-8.00023-6.
  54. Oksanen, E. 2021. Birch as a model species for the acclimation and adaptation of northern forest ecosystem to changing environment. Frontiers in Forests and Global Change, 4, 682512. DOI: 10.3389/ffgc.2021.682512.
  55. Paek, K., Chakrabarty, D., Hahn, E. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. In: Liquid culture systems for in vitro plant propagation (eds. A.K. Hvoslef-Eide, W. Preil). Springer, Dordrecht, 95–116. DOI: 10.1007/1-4020-3200-5_6.
  56. Payamnoor, V., Alizadeh, M., Ghasemi Bezdi, K., Nazari J. 2017. Micropropagation of birch (B. litwinowii) from leaf callus. Forest and Wood Products, 70 (2).
  57. Perez, C., Postigo, P. 1989. Micropropagation of Betula celtiberica. Annals of Botany, 64, 67–69.
  58. Phillips, G., Garda, M. 2019. Plant tissue culture media and practices: an overview. In Vitro Cellular and Developmental Biology – Plant, 55, 242–257. DOI: 10.1007/s11627-019-09983-5.
  59. Purohit, S., Teixeira da Silva, J., Habibi, N. 2011. Current approaches for cheaper and better micropropagation technologies. International Journal of Plant Developmental Biology, 5 (1), 1–36.
  60. Rathwell, R. 2015. In vitro propagation and preservation of cherry birch (Betula lenta L.) Doctoral dissertation, University of Guelph. Available at http://hdl.handle.net/10214/9121.
  61. Rathwell, R., Shukla, M.R., Jones, A., Maxwell, P., Saxena, P.K. 2016. In vitro propagation of cherry birch (Betula lenta L.). Canadian Journal of Plant Science, 96 (4), 571–578. DOI: 10.1139/CJPS-2015-0331.
  62. Rojo, J. et al. 2021. Effects of future climate change on birch abundance and their pollen load. Global Change Biology, 27 (22), 5934–5949. DOI: 10.1111/gcb.15824.
  63. Simola, L. 1985. Propagation of plantlets from leaf callus of Betula pendula F. Purpurea. Scientia Horticulturae, 26 (1), 77–85. DOI: 10.1016/0304-4238(85)90104-9.
  64. Singh, A. 2015. Micropropagation of plants. In: Plant biology and biotechnology. Volume 2: Plant genomics and biotechnology (eds. B. Bahadur, M.V. Rajam, L. Sahijram, K.V. Krishnamurthy). Springer, New Delhi, India, 329–346.
  65. Srivastava, P.S., Steinhauer, A., Glock, H. 1985. Plantlet regeneration in leaf and root cultures of birch (Betula pendula Roth.). Plant Science, 42 (3), 209–214. DOI: 10.1016/0168-9452(85)90129-3.
  66. Teixeira da Silva, J., Winarto, B., Dobránszki, J., Cardoso, J., Zeng, S. 2016. Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Horticulturae, 28 (1), 57–75. DOI: 10.1515/fhort-2016-0008.
  67. Tesliuk, N., Lytvyn, M., Hudzenko, T. 2022. Optimization of the nutrient medium for the primary stages of Juglans regia microclonal propagation in vitro (in Ukrainian). Microbiology and Biotechnology, 3, 24–33. DOI: 10.18524/2307-4663.2022.3(56).265806.
  68. Tommasi, F., Scaramuzzi, F. 2004. In vitro propagation of Ginkgo biloba by using various bud cultures. Biologia Plantarum, 48, 297–300. DOI: 10.1023/B:BIOP.0000033460.75432.d1.
  69. Trasar-Cepeda, C. et al. 2023. Effect of soil type and in vitro proliferation conditions on acclimation and growth of willow shoots micropropagated in continuous immersion bioreactors. Plants, 12 (1), 132. DOI: 10.3390/plants12010132.
  70. Vaičiukynė, М., Žiauka, J., Kuusienė, S. 2017. Factors that determine shoot viability and root development during in vitro adaptation and propagation of silver birch (Betula pendula Roth). Biologija, 63 (3), 246–255. DOI: 10.6001/biologija.v63i3.3579.
  71. Vítámvás, J., Kuneš, I., Viehmannová, I., Linda, R., Baláš, M. 2020. Conservation of Betula oycoviensis, an endangered rare taxon, using vegetative propagation methods. iForest, 13, 107–113. DOI: 10.3832/ifor3243-013.
  72. Welander, M. 1993. Micropropagation of birch. In: Micropropagation of woody plants. Forestry Sciences, vol 41 (ed. M.R. Ahuja). Springer, Dordrecht, 223–246. DOI: 10.1007/978-94-015-8116-5_14.
  73. Wright, J. 2017. What is a Royal Frost Birch Tree? Available at https://www.gardenguides.com/114196-royal-frost-birch-tree.html.
  74. Xuening, F., Hongzhi, G., Yaorong, S., Yongkang, W., Zaimin, J., Jing, C. 2021. Establishment of tissue culture system of Betula alba. Journal of Forestry Science, 34 (3), 194–200. DOI: 10.13275/j.cnki.lykxyj.2021.03.023.
  75. Yavorska, N., Lobachevska, O., Khorkavtsіv, Ya., Kyyak, N. 2016. Microclonal propagation of the varieties of highbush blueberry Vaccinium corymbosum L. Biotechnologia Acta, 9 (5), 30–37. DOI: 10.15407/biotech9.05.030.
  76. Zaki, M., Sofi, M.S., Kaloo, Z.A. 2011. A reproducible protocol for raising clonal plants from leaf segments excised from mature trees of Betula utilis a threatened tree species of Kashmir Himalayas. International Multidisciplinary Research Journal, 1 (5), 7–13.
  77. Zeps, M. et al. 2022. Plantlet anatomy of silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) shows intraspecific reactions to illumination in vitro. Plants, 11 (8), 1097. DOI: 10.3390/plants11081097.
  78. Zhang, Z., Sun, Y., Li, Y. 2020. Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports, 39, 1249–1262. DOI: 10.1007/s00299-020-02577-1.
  79. Ziv, M. 1994. The control of bioreactor environment for plant propagation in liquid culture. Acta Horticulturae, 393, 25–38. DOI: 10.17660/ActaHortic.1995.393.3.
DOI: https://doi.org/10.2478/ffp-2025-0013 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 150 - 167
Submitted on: Feb 6, 2025
Accepted on: Jun 17, 2025
Published on: Sep 14, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Larysa Filipova, Vyacheslav Matskevych, Małgorzata Sułkowska, Vasyl Yukhnovskyi, Olga Tupchii, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.