Have a personal or library account? Click to login
Relationships between forest ecosystem services – current state of knowledge Cover

Relationships between forest ecosystem services – current state of knowledge

Open Access
|Sep 2024

References

  1. Akujärvi, A., Repo, A., Akujärvi, A.M., Liski, J. 2021. Bridging mapping and simulation modelling in the ecosystem service assessments of boreal forests: effects of bioenergy production on carbon dynamics. Forest Ecosystems, 8 (1), 4. DOI: 10.1186/s40663-021-00283-2.
  2. Albrich, K., Rammer, W., Thom, D., Seidl, R. 2018. Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecological Application, 28, 1884–1896. DOI: 10.1002/eap.1785.
  3. Anderson, B.J. et al. 2009. Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology, 46, 888–896.
  4. Azzopardi, E. et al. 2022. What are heritage values? Integrating natural and cultural heritage into environmental valuation. People Nature, 5 (2), 368–383. DOI: 10.1002/pan3.10386.
  5. Bennett, E.M., Peterson, G.D., Gordon, L.J. 2009. Understanding relationships among multiple ecosystem services. Ecology Letters, 12, 1394–1404. DOI: 10.1111/j.1461-0248.2009.01387.x.
  6. Biber, P. et al. 2015. How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests, 6, 1666–1695. DOI: 10.3390/f6051666.
  7. Biber, P. et al. 2020. Forest biodiversity, carbon sequestration, and wood production: modeling synergies and trade-offs for ten forest landscapes across Europe. Frontiers in Ecology and Evolution, 8, 547696. DOI: 10.3389/fevo.2020.547696.
  8. Blasi, S., Menta, C., Balducci, L., Conti, F.D., Petrini, E., Piovesan, G. 2013. Soil microarthropod communities from Mediterranean forest ecosystems in Central Italy under different disturbances. Environmental Monitoring and Assessment, 185, 1637–1655. DOI: 10. 1007/s10661-012-2657-2.
  9. Blattert, C., Lemm, R., Thürig, E., Stadelmann, G., Brändli, U.-B., Temperli, C. 2020. Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data. Ecosystem Services, 45, 101150. DOI: 10.1016/j.ecoser.2020.101150.
  10. Boscolo, M., Vincent, J.R. 2003. Nonconvexities in the production of timber, biodiversity, and carbon sequestration. Journal of Environmental Economics and Management, 46, 251–268. DOI: 10.1016/S0095-0696(02)00034-7.
  11. Bouget, C., Lassauce, A., Jonsell, M. 2012. Effects of fuelwood harvesting on biodiversity — a review focused on the situation in Europe. Canadian Journal of Forest Research, 42 (8), 1421–1432. DOI: 10.1139/x2012-078.
  12. Casebeer, W.D. 2002. The biology of the masses. Human Nature Review, 2, 144–146.
  13. Decaëns, T., Jiménez, J.J., Gioia, C., Measey, G.J., Lavelle, P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42, 23–38. DOI: 10.1016/j.ejsobi.2006.07.001.
  14. Dominati, E.J. 2013. Natural capital and ecosystem services of soils. In: Ecosystem Services in New Zealand – Conditions and Trends (ed. J.R. Dymond). Manaaki Whenua Press, Lincoln, New Zealand, 132–142. Available at https://www.landcareresearch.co.nz/__data/assets/pdf_file/0008/77039/1_11_Dominati.pdf (access on 5 January 2024).
  15. Duncker, P.S. et al. 2012. How forest management affects ecosystem services, including timber production and economic return : synergies and trade-offs. Ecology and Society, 17, 50.
  16. Dymond, J.R., Ausseil, A.G.E., Ekanayake, J.C., Kirschbaum, M.U.F. 2012 Tradeoffs between soil, water, and carbon – a national scale analysis from New Zealand. Journal of Environmental Management, 95 (1), 124–131.
  17. Egli, S., Ayer, F., Peter, M., Eilmann, B., Rigling, A. 2010. Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Annals of Forest Science, 67 (5), 509. DOI: 10.1051/forest/2010011.
  18. European Parliament resolution of 13 September 2022 on a new EU Forest Strategy for 2030 – Sustainable Forest Management in Europe (2022/2016(INI)). Available at https://www.europarl.europa.eu/doceo/document/TA-9-2022-0310_EN.html (access on 10.03.2024).
  19. Eyvindson, K., Repo, A., Mönkkönen, M. 2018. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy and Economics, 92, 119–127. DOI: 10.1016/j.forpol.2018.04.009.
  20. Felipe-Lucia, M.R. et al. 2018. Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 9, 4839. DOI: 10.1038/s41467-018-07082-4.
  21. Gamborg, C., Larsen, J.B. 2003. ‘Back to nature’—a sustainable future for forestry? Forest Ecology and Management, 179, 559–571. DOI: 10.1016/S0378-1127(02)00553-4.
  22. Gamfeldt, L. et al. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328.
  23. García-Llorente, M., Martín-López, B., Díaz, S., Montes, C. 2011. Can ecosystem properties be fully translated into service values? An economic valuation of aquatic plant services. Ecological Applications, 21, 3083–3103. DOI: 10.1890/10-1744.1.
  24. García-Nieto, A.P., García-Llorente, M., Iniesta-Arandia, I., Martín-López, B. 2013. Mapping forest ecosystem services: From providing units to beneficiaries. Ecosystem Services, 4, 126–138. DOI: 10.1016/j.ecoser.2013.03.003.
  25. Granath, G., Kouki, J., Johnson, S., Heikkala, O., Rodríguez, A., Strengbom, J. 2018. Trade-offs in berry production and biodiversity under prescribed burning and retention regimes in boreal forests. Journal of Applied Ecology, 55, 1658–1667. DOI: 10.1111/1365-2664.13098.
  26. Gundersen, P. et al. 2010. Environmental services provided from riparian forests in the Nordic countries. Ambio, 39, 555–566. DOI: 10.1007/s13280-010-0073-9.
  27. Gundersen, V., Frivold, L. 2008. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban Forestry and Urban Greening, 7 (4), 241–258. DOI: 10.1016/j.ufug.2008.05.001.
  28. Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., Reyer, C.P.O. 2018. Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environmental Research Letters, 13, 045012. DOI: 10.1088/1748-9326/aab4e5.
  29. Haines-Young, R., Potschin, M. 2013. Common International Classification of Ecosystem Services (CICES V4.3) – Revised report prepared following consultation on CICES Version 4, EEA Framework Contract No EEA/IEA/09/003.
  30. Haines-Young, R., Potschin, M. 2017. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure.
  31. Häyhä, T., Franzese, P.P., Paletto, A., Fath, B.D. 2015. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14, 12–23. DOI: 10.1016/j.ecoser.2015.03.001.
  32. Häyhä, T., Franzese, P.P., Ulgiati, S. 2011. Economic and environmental performance of electricity production in Finland: A multicriteria assessment framework. Ecological Modelling, 223, 81–90. DOI: 10.1016/j.ecolmodel.2011.10.013.
  33. Hedwall, P., Brunet, J., Nordin, A., Bergh, J. 2013. Changes in the abundance of keystone forest floor species in response to changes of forest structure. Journal of Vegetation Science, 24 (2), 296–306. DOI: 10.1111/j.1654-1103.2012.01457.x.
  34. Hengeveld, G.M., Didion, M., Clerkx, S., Elkin, C., Nabuurs, G.-J., Schelhaas, M.-J. 2015. The landscape-level effect of individual-owner adaptation to climate change in Dutch forests. Regional Environmental Change, 15, 1515–1529. DOI: 10.1007/s10113-014-0718-5.
  35. Hochmalová, M. et al. 2022. Demand for forest ecosystem services: a comparison study in selected areas in the Czech Republic and China. European Journal of Forest Research, 141, 867–886. DOI: 10.1007/s10342-022-01478-0.
  36. Holland, R.A., Eigenbrod, F., Armsworth, P.R., Anderson, B.J., Thomas, C.D., Gaston, K.J. 2011. The influence of temporal variation on relationships between ecosystem services. Biodiversity and Conservation, 20, 3285–3294. DOI: 10.1007/s10531-011-0113-1.
  37. Holt, A.R., Mears, M., Maltby, L., Warren, P. 2015. Understanding spatial patterns in the production 1024 of multiple urban ecosystem services. Ecosystem Services, 16, 33–46. DOI: 10.1016/j.ecoser.2015.08.007.
  38. Hölting, L. et al. 2020. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosystems and People, 16, 354–368. DOI: 10.1080/26395916.2020.1833986.
  39. Hunter, M.L. 1999. Maintaining Biodiversity in Forest Ecosystems. Cambridge University Press, Cambridge.
  40. Huston, M.A., Marland, G. 2003. Carbon management and biodiversity. Journal of Environmental Management, 67, 77–86. DOI: 10.1016/S0301-4797(02)00190-1.
  41. Hynynen, J., Ahtikoski, A., Siitonen, J., Sievänen, R., Liski, J. 2005. Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. Forest Ecology and Management, 207, 5–18. DOI: 10.1016/j.foreco.2004.10.015.
  42. Jopke, C., Kreyling, J., Maes, J., Koellner, T. 2015. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecological Indicators, 49, 46–52. DOI: 10.1016/j.ecolind.2014.09.037.
  43. Jönsson, M., Snäll, T. 2020. Ecosystem service multifunctionality of low-productivity forests and implications for conservation and management. Journal of Applied Ecology, 57 (4), 695–706. DOI: 10.1111/1365-2664.13569.
  44. Krajter Ostoić, S., Marin, A.M., Kičić, M., Vuletić, D. 2020. Qualitative exploration of perception and use of cultural ecosystem services from tree-based urban green space in the city of Zagreb (Croatia). Forests, 11, 876. DOI: 10.3390/f11080876.
  45. Kraxner, F. et al. 2013. Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs. Biomass and Bioenergy, 57, 86–96. DOI: 10.1016/j.biombioe.2013.02.003.
  46. Kurttila, M., Pukkala, T., Miina, J. 2018. Synergies and trade-offs in the production of NWFPs predicted in boreal forests. Forests, 9, 417. DOI: 10.3390/f9070417.
  47. Lautenbach, S. et al. 2017. Trade-offs between plant species richness and carbon storage in the context of afforestation – Examples from afforestation scenarios in the Mulde Basin, Germany. Ecological Indicators, 73, 139–155. DOI: 10.1016/j.ecolind.2016.09.035.
  48. Lee, H., Lautenbach, S. 2016. A quantitative review of relationships between ecosystem services. Ecological Indicators, 66, 340–351. DOI: 10.1016/j.ecolind.2016.02.004.
  49. MacMillan, D.C., Phillip, S. 2008. Consumptive and non-consumptive values of wild mammals in Britain. Mammal Review, 38, 189–204. DOI: 10.1111/j.1365-2907.2008.00124.x.
  50. Maes, J. et al. 2020. Mapping and assessment of ecosystems and their services: An EU ecosystem assessment. Publications Office of the European Union, Luxembourg. DOI: 10.2760/757183,JRC120383.
  51. Martín-López, B. et al. 2012. Uncovering ecosystem service bundles through social preferences. PLoS One, 7, e38970. DOI: 10.1371/journal.pone.0038970.
  52. Miina, J., Hotanen, J., Salo, K. 2009. Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fennica, 43 (4), 577–593. DOI: 10.14214/sf.181.
  53. Miina, J., Kurttila, M., Salo, K. 2013. Kauppasienisadot itäsuomalaisissa kuusikoissa – koealaverkosto ja tuloksia vuosilta 2010–2012 (in Finnish with English summary). Working Papers of the Finnish Forest Research Institute, 266.
  54. Morán-Ordóñez, A. et al. 2020. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosystem Services, 45, 101174. DOI: 10.1016/j.ecoser.2020.101174.
  55. Motiejūnaitė, J. et al. 2019. Cultural ecosystem services provided by the biodiversity of forest soils: a European review. Geoderma, 343, 19–30.
  56. Nielsen, A., Olsen, S.B., Lundhede, T. 2007. An economic valuation of the recreational benefits associated with nature-based forest management practices. Landscape and Urban Planning, 80, 63–71.
  57. Nielsen, A., Heyman, E., Richnau, G. 2012. Liked, disliked and unseen forest attributes: Relation to modes of viewing and cognitive constructs. Journal of Environmental Management, 113, 456–466.
  58. Niemi, R.M. et al. 2014. Variability of soil enzyme activities and vegetation succession following boreal forest surface soil transfer to an artificial hill. Nature Conservation, 8, 1–25.
  59. Ndong, G.O., Therond, O., Cousin, I. 2020. Analysis of relationships between ecosystem services: A generic classification and review of the literature. Ecosystem Services, 43, 101120. DOI: 10.1016/j.ecoser.2020.101120.
  60. Orsi, F., Ciolli, M., Primmer, E., Varumo, L., Geneletti, D. 2020. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy, 99, 104840. DOI: 10.1016/j.landusepol.2020.104840.
  61. Pedroli, B. et al. 2013. Is energy cropping in Europe compatible with biodiversity? – Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass and Bioenergy, 55, 73–86. DOI: 10.1016/j.biombioe.2012.09.054.
  62. Penttilä, R., Lindgren, M., Miettinen, O., Rita, H., Hanski, I. 2006. Consequences of forest fragmentation for polyporous fungi at two spatial scales. OIKOS, 114 (2), 225–240. DOI: 10.1111/j.2006.0030-1299.14349.x.
  63. Peters, D.M. et al. 2015. Energy wood from forests—stakeholder perceptions in five European countries. Energy, Sustainability and Society, 5, 17. DOI: 10.1186/s13705-015-0045-9.
  64. Peura, M., Burgas, D., Eyvindson, K., Repo, A., Mönkkönen, M. 2018. Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biological Conservation, 217, 104–112. DOI: 10.1016/j.biocon.2017.10.018.
  65. Piaggio, M., Siikamäki, J. 2021. The value of forest water purification ecosystem services in Costa Rica. Science of The Total Environment, 789, 147952. DOI: 10.1016/j.scitotenv.2021.147952.
  66. Pohjanmies, T., Triviño, M., Le Tortorec, E., Mazziotta, A., Snäll, T., Mönkkönen, M. 2017. Impacts of forestry on boreal forests: An ecosystem services perspective. Ambio, 46, 743–755. DOI: 10.1007/s13280-017-0919-5.
  67. Pullin, A., Stewart, G. 2009. Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20, 1647–1656.
  68. Referowska-Chodak, E. 2015. Ludowe zwyczaje związane z grzybami w Polsce [Folk traditions traditions connected to mushrooms in Poland]. Studia i Materiały CEPL w Rogowie, 44, 200–217.
  69. Ring, I., Schröter-Schlaack, C. 2011. Instrument Mixes for Biodiversity Policies. POLICYMIX Report, Issue No. 2/2011, Helmholtz Centre for Environmental Research – UFZ, Leipzig.
  70. Roces-Díaz, J.V. et al. 2018. The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Science of the Total Environment, 626, 1270–1283. DOI: 10.1016/j.scitotenv.2018.01.150.1016.
  71. Sacchelli, S. et al. 2014. Matching socio-economic and environmental efficiency of wood-residues energy chain: a partial equilibrium model for a case study in Alpine area. Journal of Cleaner Production, 66, 431–442. DOI: 10.1016/j.jclepro.2013.11.059.
  72. Sacchelli, S., De Meo, I., Paletto, A. 2013. Bioenergy production and forest multifunctionality: A tradeoff analysis using multiscale GIS model in a case study in Italy. Applied Energy, 104, 10–20. DOI: 10.1016/j.apenergy.2012.11.038.
  73. Sacchelli, S. 2018. A decision support system for trade-off analysis and dynamic evaluation of forest ecosystem services. IForest, 11, 171–180. DOI: 10.3832/ifor2416-010.
  74. Sántha, E., Bentsen, N.S. 2020. Ecosystem service benefits and trade-offs—selecting tree species in Denmark for bioenergy production. Forests, 11 (3), 277. DOI: 10.3390/f11030277.
  75. Scheidl, C. et al. 2020. Assessing the protective role of alpine forests against rockfall at regional scale. European Journal of Forest Research, 139, 969–980. DOI: 10.1007/s10342-020-01299-z.
  76. Schröter, M., Rusch, G.M., Barton, D.N., Blumentrath, S., Nordén, B. 2014. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity. PLoS One, 9, e112557. DOI: 10.1371/journal.pone.0112557.
  77. Schwaiger, F., Poschenrieder, W., Biber, P., Pretzsch, H. 2019. Ecosystem service trade-offs for adaptive forest management. Ecosystem Services, 39, 100993. DOI: 10.1016/j.ecoser.2019.100993.
  78. Schwenk, W.S., Donovan, T.M., Keeton, W.S., Nunery, J.S. 2012. Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecological Applications, 22, 1612–1627. DOI: 10.1890/11-0864.1.
  79. Sedmák, R. et al. 2020. Optimizing the tending of forest stands with interactive decision maps to balance the financial incomes and ecological risks according to owner demands: case study in Rakovník, the Czech Republic. Forests, 11, 730. DOI: 10.3390/f11070730.
  80. Seidl, R., Rammer, W., Jäger, D., Currie, W.S., Lexer, M.J. 2007. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. Forest Ecology and Management, 248, 64–79. DOI: 10.1016/j.foreco.2007.02.035.
  81. Selkimäki, M., González-Olabarria, J.R., Trasobares, A., Pukkala, T. 2020. Trade-offs between economic profitability, erosion risk mitigation and biodiversity in the management of uneven-aged Abies alba Mill. stands. Annals of Forest Science, 77, 12. DOI: 10.1007/s13595-019-0914-z.
  82. Seymour, R., Hunter, M. 1992. New Forestry in Eastern Spruce-Fir Forests: Principles and Applications to Maine. University of Maine, Orono.
  83. Seymour, R.S., Hunter, M.L. 1999. Principles of ecological forestry. In: Maintaining biodiversity in forest ecosystems (ed. M.L. Hunter). Cambridge University Press, Cambridge, 22–62.
  84. Simons, N.K. et al. 2021. National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 8, 5. DOI: 10.1186/s40663-021-00280-5.
  85. Stokely, T.D. et al. 2021. Experimental evaluation of herbicide use on biodiversity, ecosystem services and timber production trade-offs in forest plantations. Journal of Apllied Ecology, 59 (1), 52–66. DOI 10.1111/1365-2664.13936.
  86. Tahvainen, L., Tyrväinen, L., Ilhalainen, M., Vuorela, N., Kolehmainen, O. 2001. Forest management and public perceprions – visual versus verbal information. Landscape and Urban Planning, 53, 53–70.
  87. Teben’kova, D.N. et al. 2020. Multifunctionality and biodiversity of forest ecosystems. Contemporary Problems of Ecology, 13, 709–719. DOI: 10.1134/S1995425520070136.
  88. Temperton, V.M. et al. 2019. Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restoration Ecology, 27, 705–719. DOI: 10.1111/rec.12989.
  89. Thom, D. et al. 2017. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 54, 28–38. DOI: 10.1111/1365-2664.12644.
  90. Thrippleton, T. et al. 2023. Balancing disturbance risk and ecosystem service provisioning in Swiss mountain forests: an increasing challenge under climate change. Regional Environmental Change, 23, 29. DOI: 10.1007/s10113-022-02015-w.
  91. Triviño, M. et al. 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon. Ecosystem Services, 14, 179–189. DOI: 10.1016/j.ecoser.2015.02.003.
  92. Triviño, M. et al. 2017. Optimizing management to enhance multifunctionality in a boreal forest landscape. Journal of Applied Ecology, 54, 61–70. DOI: 10.1111/1365-2664.12790.
  93. Turner, K.G., Odgaard, M.V., Bøcher, P.K., Dalgaard, T., Svenning, J.C. 2014. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape and Urban Planning, 125, 89–104. DOI: 10.1016/j.landurbplan.2014.02.007.
  94. Turtiainen, M., Miina, J., Salo, K., Hotanen, J. 2013. Empirical prediction models for the coverage and yields of cowberry in Finland. Silva Fennica, 47 (3), 1005. DOI: 10.14214/sf.1005.
  95. Tyrväinen, L. 2001. Economic valuation of urban forest benefits in Finland. Journal of Environmental Management, 62, 75–92.
  96. Ulicsni, V., Svanberg, I., Molnár, Z. 2016. Folk knowledge of invertebrates in Central Europe – folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation. Journal of Ethnobiology and Ethnomedicine, 12, 47. DOI: 10.1186/s13002-016-0118-7.
  97. Van der Plas, F. et al. 2018. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 21 (1), 31–42. DOI: 10.1111/ele.12868.
  98. Verkerk, P.J., Lindner, M., Zanchi, G., Zudin, S. 2011. Assessing impacts of intensified biomass removal on deadwood in European forests. Ecological Indicators, 11, 27–35. DOI: 10.1016/j.ecolind.2009.04.004.
  99. Verkerk, P.J., Zanchi, G., Lindner, M. 2014. Tradeoffs between forest protection and wood supply in Europe. Environmental Management, 53 (6), 1085–1094. DOI: 10.1007/s00267-014-0265-3.
  100. Zanchi, G., Brady, M.V. 2019. Evaluating the contribution of forest ecosystem services to societal welfare through linking dynamic ecosystem modelling with economic valuation. Ecosystem Services, 39, 101011. DOI: 10.1016/j.ecoser.2019.101011.
DOI: https://doi.org/10.2478/ffp-2024-0017 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 228 - 248
Submitted on: May 27, 2024
Accepted on: Jul 8, 2024
Published on: Sep 12, 2024
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mariusz Ciesielski, Piotr Gołos, Emilia Wysocka-Fijorek, Adam Kaliszewski, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.