References
- Augusto, L., Ranger, J., Binkley, D., Rothe, A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59 (3), 233–253. DOI: 10.1051/forest:2002020.
- Baral, H.O., Queloz, V., Hosoya, T. 2014. Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus, 5, 79. DOI: 10.5598%2Fimafungus.2014.05.01.09.
- Bartoń, K. 2017. MuMIn: Multi-Model Inference. Version 1.40.0. Available at: cran.r-project.org/web/packages/MuMIn/index.html (access on 22 June 2024).
- Beckage, B., Lavine, M., Clark, J.S. 2005. Survival of tree seedlings across space and time: estimates from long-term count data. Journal of Ecology, 93, 1177–1184. DOI: 10.1111/j.1365-2745.2005.01053.x.
- Beloiu, M., Stahlmann, R., Beierkuhnlein, C. 2020. High Recovery of Saplings after Severe Drought in Temperate Deciduous Forests. Forests, 11 (5), 546. DOI: 10.3390/f11050546.
- Beloiu, M., Stahlmann, R., Beierkuhnlein, C. 2022. Drought impacts in forest canopy and deciduous tree saplings in Central European forests. Forest Ecology and Management, 509, 120075. DOI: 10.1016/j.foreco.2022.120075.
- Bergquist, J. 1998. Influence by ungulates on early plant succession and forest regeneration in south Swedish spruce forests. Ph.D. thesis, Swedish University of Agricultural Science.
- Brooks, M.E. et al. 2017. glmmTMB balances speed and flexibility among packages for Zero-inflated Generalized Linear Mixed Modeling. R Journal, 9, 378400. DOI: 10.32614/RJ-2017-066.
- Buhk, C., Kämmer, M., Beierkuhnlein, C., Jentsch, A., Kreyling, J., Jungkunst, H.F. 2016. On the influence of provenance to soil quality enhanced stress reaction of young beech trees to summer drought. Ecology and Evolution, 6, 8276–8290. DOI: 10.1002/ece3.2472.
- Climate–Data.org. Available at https://pl.climate-data.org/ (access on 22 June 2024).
- Coker, T., Rozsypálek, J., Edwards, A., Harwood, T., Butfoy, L., Buggs, R. 2019. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants, People, Planet, 1, 48–58. DOI: 10.1002/ppp3.11.
- Connell, J.H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of populations (eds. P.J. Den Boer, G.R. Gradwell). Pudoc, Wageningen, The Netherlands, 298–312.
- Cracknell, D.J., Peterken, G.F., Pommerening, A., Lawrence, P.J., Healey, J.R. 2023. Neighbours matter and the weak succumb: Ash dieback infection is more severe in ash trees with fewer conspecific neighbours and lower prior growth rate. Journal of Ecology, 111 (10), 2118–2133. DOI: 10.1111/1365-2745.14191.
- Davydenko, K., Meshkova, V. 2017. The current situation concerning severity and causes of ash dieback in Ukraine caused by Hymenoscyphus fraxineus. In: Dieback of European ash (Fraxinus spp.). Consequences and Guidelines for Sustainable Management (eds. R. Vasaitis, R. Enderle). Swedish University of Agricultural Sciences, Uppsala, Sweden, 220–227.
- Diekmann, M. 1996. Ecological behaviour of deciduous hardwood trees in boreo-nemoral Sweden in relation to light and soil conditions. Forest Ecology and Management, 86, 1–14. DOI: 10.1016/S0378-1127(96)03795-4.
- Dobrowolska, D., Hein, S., Oosterbaan, A., Wagner, S., Clark, J., Skovsgaard, J.P. 2011. A review of European ash (Fraxinus excelsior L.): implications for silviculture. Forestry, 84, 133–148. DOI: 10.1093/forestry/cpr001.
- Dufour, S., Piegay, H. 2008. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology, 89, 205–215. DOI: 10.1890/06-1768.1.
- Dyderski, M.K. et al. 2018. Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. In low-elevation mountain forests. Annals of Forest Science, 75, 91. DOI: 10.1007/s13595-018-0775-x.
- Dyderski, M.K., Jagodziński, A.M. 2020. Impact of invasive tree species on natural regeneration species composition, diversity, and density. Forests, 11 (4), 456. DOI: 10.3390/f11040456.
- Ellenberg, H. 1996. Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart, Germany.
- Erfmeier, A., Haldan, K.L., Beckmann, L.M., Behrens, M., Rotert, J., Schrautzer, J. 2019. Ash dieback and its impact in near–natural forest remnants – a plant community-based inventory. Frontiers in Plant Science, 10. DOI: 10.3389/fpls.2019.00658.
- Falkengren-Grerup, U., Brink, D.J ten, Brunet, J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecology and Management, 225, 1/3, 74–81. DOI: 10.1016/j.foreco.2005.12.027.
- Forest Data Bank. Available at: https://www.bdl.lasy.gov.pl/portal/en (access on 22 June 2024).
- Fox, J., Weisberg, S. 2011. An R Companion to Applied Regression. SAGE Publications, Thousand Oaks, California.
- Grosdidier, M., Scordia, T., Ioos, R., Marçais, B. 2020. Landscape epidemiology of ash dieback. Journal of Ecology, 00, 1–11. DOI: 10.1111/1365-2745.13383.
- Hartig, F. 2020. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.7. Available at: cran.r-project.org/package=DHARMa (access on 22 June 2024).
- Havrdová, L., Zahradník, D., Romportl, D., Pešková, V., Černý, K. 2017. Environmental and silvicultural characteristics influencing the extent of ash dieback in forest stands. Baltic Forestry, 23, 168–182.
- Hobbie, S.E. et al. 2007. Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10, 999–1018. DOI: 10.1007/s10021-007-9073-4.
- Hong, S., Gan, P., Chen, A. 2019. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research, 172, 159–165. DOI: 10.1016/j.envres.2019.02.020.
- IUSS Working Group WRB. 2022. World Reference Base for Soil Resources 2022. International soil classification system for naming soils and creating legends for soil maps. International Union of Soil Sciences, Vienna.
- Jagodziński, A.M., Dyderski, M.K., Horodecki, P., Knight, K.S., Rawlik, K., Szmyt, J. 2019. Light and propagule pressure affect invasion intensity of Prunus serotina in a 14-tree species forest common garden experiment. NeoBiota, 46, 1–21. DOI: 10.3897/neobiota.46.30413.
- Janzen, D.H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist, 164, 940. DOI: 10.1086/282687.
- Jochner-Oette, S., Rohrer, T., Eisen, A.K., Tönnes, S., Stammel, B. 2021. Influence of forest stand structure and competing understory vegetation on ash regeneration – potential effects of ash dieback. Forests, 12 (2), 128. DOI: 10.3390/f12020128.
- Kerr, G., Cahalan, C. 2004. A review of site factors affecting the early growth of ash (Fraxinus excel-sior L.). Forest Ecology and Management, 188, 225–234. DOI: 10.1016/j.foreco.2003.07.016.
- Konôpka, B., Pajtík, J. 2015. Why was browsing by red deer more frequent but represented less consumed mass in young maple than in ash trees? Journal of Forest Science, 61, 431–438. DOI: 10.17221/70/2015-JFS.
- Kowalski, T., Bilański, P., Kraj, W. 2017. Pathogenicity of fungi associated with ash dieback towards Fraxinus excelsior. Plant Pathology, 66 (8), 1228–1238. DOI: 10.1111/ppa.12667.
- Kowalski, T., Czekaj, A. 2010. Disease symptoms and fungi on dying ash trees (Fraxinus excelsior L.) in Staszów Forest District stands. Forest Research Papers, 71, 357–368. DOI: 10.2478/v10111-010-0031-0.
- Lityński, T., Jurkowska, H., Gorlach, E. 1976. Chemical and agricultural analysis. Methodological guide for soil and fertilizer analysis (in Polish). Polskie Wydawnictwo Naukowe, Warsaw, Poland.
- Lüdecke, D. 2018. Ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3 (26), 772. DOI: 10.21105/joss.00772.
- Marçais, B. et al. 2017. Estimation of ash mortality induced by Hymenoscyphus fraxineus in France and Belgium. Baltic Forestry, 23, 159–167.
- Marçais, B, Giraudelb, A., Hussonb, C. 2023. Ability of the ash dieback pathogen to reproduce and to induce damage on its host are controlled by different environmental parameters. PLOS Pathogens, 19 (4), e1010558. DOI: 10.1371/journal.ppat.1010558.
- Modrý, M., Hubený, D., Rejšek, K. 2004. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 188, 185–195. DOI: 10.1016/j.foreco.2003.07.029.
- Nakagawa, S., Schielzeth, H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4 (2), 133–142. DOI: 10.1111/j.2041-210x.2012.00261.x.
- Nelson, D.W., Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 3 (ed. J.M. Bigham). Chemical Methods-SSSA Book Series no. 5. Madison, USA.
- Niinemets, Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management, 260, 1623–1639. DOI: 10.1016/j.foreco.2010.07.054.
- Ostrowska, A., Gawliński, S., Szczubiałka, Z. 1991. Methods of analysis and evaluation of soil and plant properties (in Polish). Katalog Instytutu Ochrony Środowiska, Warsaw, Poland.
- Pastório, F., Bloemer, H., de Gasper, A. 2018. Floristic and structural composition of natural regeneration in a subtropical Atlantic Forest. Floresta e Ambiente, 25, 4. DOI: 10.1590/2179-8087.044617.
- Poznan.Lasy.gov.pl. Available at: https://www.poznan.lasy.gov.pl/ (access on 22 June 2024).
- Pušpure, I., Matisons, R., Laiviņš, M., Gaitnieks, T., Jansons, J. 2017. Natural regeneration of common ash in young stands in Latvia. Baltic Forestry, 23, 209–217.
- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Reich, P.B. et al. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters, 8 (8), 811–818. DOI: 10.1111/j.1461-0248.2005.00779.x.
- Renaud, P.C., Dumont, B., Verheyden-Tixier, H. 2001. Do foliage high and structure of saplings affect feeding preferences of red deer Cervus elaphus? In: Proceedings of International Conference on Forest Dynamics and Ungulate Herbivory, 3–6 October 2001, Davos, Switzerland.
- Rubel, F., Kottek, M. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19 (2), 135–141. DOI: 10.1127/0941-2948/2010/0430.
- Semizer-Cuming, D., Chybicki, I.J., Finkeldey, R., Kjær, E.D. 2021. Gene flow and reproductive success in ash (Fraxinus excelsior L.) in the face of ash dieback: restoration and conservation. Annals of Forest Science, 78 (14). DOI: 10.1007/s13595-020-01025-0.
- Şenlikci, A., Doğu, M., Eren, E., Çetinkaya, E., Karadağ, S. 2015. Pressure calcimeter as a simple method for measuring the CaCO3 content of soil and comparison with Scheibler calcimeter. Soil-Water Journal, Special Issue, 24–28.
- Skovsgaard, J.P., Thomsen, I.M., Skovgaard, I.M., Martinussen, T. 2010. Associations among symptoms of dieback in even-aged stands of ash (Fraxinus excelsior L.). Forest Pathology, 40 (1), 7–18. DOI: 10.1111/j.1439-0329.2009.00599.x.
- Střeštík, S., Šamonil, P. 2006. Ecological valence of expanding European ash (Fraxinus excelsior L.) in the Bohemian Karst (Czech Republic). Journal of Forest Science, 52 (7), 293–305. DOI: 10.17221/4511-JFS.
- Tabari, K.M., Lust, N. 1999. Monitoring of natural regeneration in a mixed deciduous forest. Silva Gandavensis, 64. DOI: 10.21825/sg.v64i0.829.
- Taylor, A.H., Halpern, C.B. 1991. The structure and dynamics of Abies magnifica forests in the southern Cascade Range, USA. Journal of Vegetation Science, 2 (2), 189–200. DOI: 10.2307/3235951.
- Thomas, P.A. 2016. Biological flora of the British Isles: Fraxinus excelsior. Journal of Ecology, 104 (4), 1158–1209. DOI: 10.1111/1365-2745.12566.
- Timmermann, V., Børja, I., Hietala, A.M., Kirisits, T., Solheim, H. 2011. Ash dieback: Pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. EPPO Bulletin, 41, 14–20. DOI: 10.1111/j.1365-2338.2010.02429x.
- Turczański, K., Bukowski, Ł. 2022. Variability of soil conditions in habitats with European ash (Fraxinus excelsior L.) based on moist broadleaved forest. A case study (in Polish with English summary). Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria (Polish Journal of Forestry), 21 (1), 21–32. DOI: 10.17306/J.AFW.2022.1.3.
- Turczański, K., Dyderski, M.K., Andrzejewska, A. 2022. Drivers of ash (Fraxinus excelsior L.) natural regeneration spread into suboptimal sites – refugee or dead end? Forest Ecology and Management, 505, 119870. DOI: 10.1016/j.foreco.2021.119870.
- Turczański, K., Dyderski, M.K., Rutkowski, P. 2021. Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.). Science of the Total Environment, 752, 141787. DOI: 10.1016/j.scitotenv.2020.141787.
- Turczański, K., Rutkowski, P., Dyderski, M.K., Wrońska-Pilarek, D., Nowiński, M. 2020a. Soil pH and organic matter content affects European ash (Fraxinus excelsior L.) crown defoliation and its impact on understory vegetation. Forests, 11 (1), 22. DOI: 10.3390/f11010022.
- Turczański, K., Rutkowski, P., Nowiński, M., Zawieja, B. 2020b. Kondycja jesionu wyniosłego (Fraxinus excelsior L.) w zależności od warunków wilgotnościowych wybranych siedlisk leśnych. Sylwan, 164, 133–141. DOI: 10.26202/sylwan.2019087.
- Willis, J.L., Walters, M.B., Farinosi, E. 2016. Local seed source availability limits young seedling populations for some species more than other factors in northern hardwood forests. Forest Science, 62, 440–448. DOI: 10.5849/forsci.15-143.