Have a personal or library account? Click to login
Analysis of the genetic diversity and population structures of black locust (Robinia pseudoacacia L.) stands in Poland based on simple sequence repeat markers Cover

Analysis of the genetic diversity and population structures of black locust (Robinia pseudoacacia L.) stands in Poland based on simple sequence repeat markers

Open Access
|Dec 2023

References

  1. Ábri, T., Keserű, Z., Rásó, J., Rédei, K. 2021. Stand structure and growth of Robinia pseudoacacia ‘Jászkiséri’–‘Jászkiséri’black locust. Journal of Forest Science, 67 (10), 489–497. DOI: 10.17221/57/2021-JFS
  2. Alizoti, P. et al. 2022. Non-native forest tree species in Europe: the question of seed origin in afforestation. Forests 13, 273. DOI: 10.3390/f1302027
  3. Ashby, W.C., Kolar, C.A., Rogers, N.F. 1980. Results of 30-year-old plantations on surface mines in the central states. USDA Forest Service General Technical Report, NE-61, 99–107.
  4. Bartha, D., Csiszár, Á., Zsigmond, V. 2008. Black locust (Robinia pseudoacacia L.) In: The most invasive plants in Hungary (eds. Botta-Dukát Z, Balogh L.). Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, Hungary, 63–76.
  5. Benesperi, R. et al. 2012. Forest plant diversity is threatened by Robinia pseudoacacia (Black-locust) invasion. Biodiversity and Conservation, 21 (14), 3555–3568. DOI: 10.1007/s10531-012-0380-5
  6. Boczkowska, M., Onyśk, A. 2016. Unused genetic resources: a case study of Polish common oat germplasm. Annals of Applied Biology, 169 (1), 155–165. DOI: 10.1111/aab.12289
  7. Böhm, C., Quinkenstein, A., Freese, D. 2011. Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Annals of Forest Research, 54 (2), 215–227. DOI: 10.15287/afr.2011.91
  8. Bouteiller, X.P. et al. 2019. A few north Appalachian populations are the source of European black locust. Ecology and Evolution, 9 (5), 2398–2414. DOI: 10.1002/ece3.4776
  9. Carletti, G., Cattivelli L., Vietto, L, Nervo, G. 2021. Multiallelic and multilocus simple sequence repeats (SSRs) to assess the genetic diversity of a Salix spp. germplasm collection. Journal of Forestry Research, 32 (1), 263–217. DOI: 10.1007/s11676-019-00913-0
  10. Chakraborty, A., Joshi, P.K., Sachdeva, K. 2016. Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 97, 593–609. DOI: 10.1016/j.ecoleng.2016.10.006
  11. Cierjacks, A. et al. 2013. Biological flora of the British Isles: Robinia pseudoacacia. Journal of Ecology, 101 (6), 1623–1640. DOI: 10.1111/1365-2745.12162
  12. Cuevas, H.E., Prom, L.K. 2020. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genomics, 21 (1), 1–15. DOI: 10.1186/s12864-020-6489-0
  13. DAISIE European Invasive Alien Species Gateway. 2006. Robinia pseudoacacia. Available at http://www.europe-aliens.org/speciesFactsheet.do?speciesId=11942 (access on 3 October 2012).
  14. Dąbrowska, G., Dąbrowski, H.P., Szyp-Borowska, I. 2021. Genetic diversity of Betula nana in Sweden and conservation implications for protection of relict Polish populations. Folia Forestalia Polonica, Series A – Forestry, 63 (3), 225–231. DOI: 10.2478/ffp-2021-0023
  15. Dąbrowska, G., Dzialuk, A., Burnicka, O., Ejankowski, W., Gugnacka-Fiedor, W., Goc, A. 2006. Genetic diversity of postglacial relict shrub Betula nana revealed by RAPD analysis. Dendrobiology, 55, 19–23.
  16. DeGomez, T., Wagner, M. 2001. Arthropod diversity of exotic vs. native Robinia species in Northern Arizona. Agricultural and Forest Entomology, 3, 19–27. DOI: 10.1046/j.1461-9563.2001.00082
  17. Dimitrova, A. et al. 2022. Risks, benefits, and knowledge gaps of non-native tree species in Europe. Frontiers in Ecology and Evolution, 10, 908464. https://doi.org/10.3389/fevo.2022.908464
  18. Dini-Papanastasi, O., Panetsos, C.P. 2000. Relation between growth and morphological traits and genetic parameters of Robinia pseudoacacia var. monophylla DC in northern Greece. Silvae genetica, 49 (1), 37–44.
  19. Dong, L., Sun, Y.H., Zhao, K.Q., Zhang, J., Li, Y. 2019. Development and application of EST-SSR markers for DNA fingerprinting and genetic diversity analysis of the main cultivars of black locust (Robinia pseudoacacia L.) in China. Forests, 10, 644. DOI: 10.3390/f10080644
  20. Dunlun, Z., Zhenfen, Z., Fangquan, W. 1995. Progress in clonal selection and breeding of black locust (Robinia pseudoacacia L.). forest tree improvement in the Asia-Pacific Region. China Forestry Publishing House, Beijing, 152–156.
  21. Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziński, A.M. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24 (3), 1150–1163. DOI: 10.1111/gcb.13925
  22. Dzwonko, Z., Loster, S. 1997. Effects of dominant trees and anthropogenic disturbances on species richness and floristic composition of secondary communities in Southern Poland. Journal of Applied Ecology, 34, 861–870.
  23. Eilmann, B., Dobbertin, M., Rigling, A. 2013. Growth response of Scots pine with different crown transparency status to drought release. Annals of Forest Science, 70, 685–693. DOI: 10.1007/s13595-013-0310-z
  24. Everitt, J.H., Lonard, R.I., Little, C.R. 2007. Weeds in South Texas and Northern Mexico. Texas Tech University Press, Lubbock.
  25. González-Martınez, S.C. et al. 2004. Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages. Forest Ecology and Management, 197, 103–115.
  26. Grünewald, H., Böhm, C., Quinkenstein, A., Grundmann, P., Eberts, J., von Wühlisch, G. 2009. Robinia pseudoacacia L.: a lesser known tree species for biomass production. BioEnergy Research, 2 (3), 123–133. DOI: 10.1007/s12155-009-9038-x
  27. Guan, C.F. et al. 2019. Genetic diversity, germplasm identification and population structure of Diospyros kaki Thunb. from different geographic regions in China using SSR markers. Scientia Horticulturae, 251, 233–240. DOI: 10.1016/j.scienta.2019.02.062
  28. Guo, Q., Wang, J.X., Su, L.Z., Lv, W., Sun, Y.H, Li, Y. 2017. Development and evaluation of a novel set of EST-SSR markers based on transcriptome sequences of black locust (Robinia pseudoacacia L.). Genes, 8 (7), 177. DOI: 10.3390/genes8070177
  29. Guo, Q. et al. 2022. Genetic diversity and population structure of Robinia pseudoacacia from six improved variety bases in China as revealed by simple sequence repeat markers. Journal of Forestry Research, 33 (2), 611–621. DOI: 10.1007/s11676-021-01356-2
  30. Guoqing, L., Guanghua, X., Ke, G., Sheng, D. 2014. Mapping the global potential geographical distribution of black locust (Robinia pseudoacacia L.) using herbarium data and a maximum entropy model. Forests, 5, 2773–2792. DOI: 10.3390/f5112773
  31. Hall, D., Zhao, W., Wennstrom, U., Gull, B.A., Wang, X.R. 2020. Parentage and relatedness reconstruction in Pinus sylvestris using 326 genotyping-by-sequencing. Heredity, 124, 633–646. DOI: 10.1038/s41437-020-0302-3
  32. Halupa, L., Veperdi, G., Veperdi, I. 2000. Evaluation of the energy-production plantations. In: Proceedings of the Hungarian Forest Research Institute (Erdészeti Kutatások), Budapest, 90, 87–98.
  33. Hegedusova, K., Senko, D. 2011. Successional changes of dry grasslands in southwestern Slovakia after 46 years of abandonment. Plant Biosystems, 145, 666–687. DOI: 10.1080/11263504.2011.601605
  34. Hicks, W.K., Whitfield, C.P., Bealey, W.J, Sutton, M.A. 2011. Nitrogen deposition and Natura 2000: science and practice in determining environmental impacts. Workshop Proceedings, COST. Available at http://cost729.ceh.ac.uk/n2kworkshop
  35. Hruška, K. 1991. Human impact on the forest vegetation in the western part of the Pannonic Plain (Yugoslavia). Vegetatio, 92 (2), 161–166. DOI: 10.1007/BF00036036
  36. Huo, X., Han, H., Zhang, J., Yang, M. 2009. Genetic diversity of Robinia pseudoacacia populations in China detected by AFLP markers. Frontiers of Agriculture in China, 3, 337–345. DOI: 10.1007/s11703-009-0034-x
  37. IPCC. 2021. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  38. Jump, A.S., Penuelas, J. 2007. Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Molecular Ecology, 16 (5), 925–936. DOI: 10.1111/j.1365-294X.2006.03203.x
  39. Keresztesi, B. 1983. Breeding and cultivation of black locust, Robinia pseudoacacia, in Hungary. Forest Ecology and Management, 9, 217–244.
  40. Kleinbauer, I., Dullinger, S., Peterseil, J., Essl, F. 2010. Climate change must drive the invasive tree Robinia pseudoacacia into nature reserve and endangered habitats. Biological Conservation, 143 (2), 382–390. DOI: 10.1016/j.biocon.2009.10.024
  41. Klisz, M. et al. 2021. Variability in climate-growth reaction of Robinia pseudoacacia in Eastern Europe indicates potential for acclimatisation to future climate. Forest Ecology and Management, 492. DOI: 10.1016/j.foreco.2021.119194
  42. Kowalewski, M. 2013. Wpływ obcych gatunków drzew na ekosystemy leśne. Postępy Techniki w Leśnictwie, 121, 30–36.
  43. Kraszkiewicz, A. 2013. Evaluation of the possibility of energy use black locust (Robinia pseudoacacia L.) dendromass acquired in forest stands growing on clay soils. Journal of Central European Agriculture, 14 (1), 388–399. DOI: 10.5513/JCEA01/14.1.1212
  44. Langmaier, M., Lapin, K. 2020. A systematic review of the impact of invasive alien plants on forest regeneration in European temperate forests. Frontiers in Plant Science, 11, 524969. DOI: 10.3389/fpls.2020.524969
  45. Lee, K.J., Sohn, J.H., Rédei, K., Yun, H.Y. 2007. Selection of early and late flowering Robinia pseudoacacia from domesticated and introduced cultivars in Korea and prediction of flowering period by accumulated temperature. Journal of Korean Society of Forest Science, 96 (2), 170–177.
  46. Lian, C., Hogetsu, T. 2002. Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-supression-PCR technique. Molecular Ecology Notes, 2 (3), 211–213. DOI: 10.1046/j.1471-8286.2002.00213.x-i2
  47. Liesebach, H., Ewald, E. 2012. Optimisation of a multiplex PCR assay of nuclear microsatellite markers for population genetics and clone identification in Robinia pseudoacacia L. Silvae Genetica, 61 (4), 142–148. DOI: 10.1515/sg-2012-0018
  48. Liesebach, H., Schneck, V. 2012. Chloroplast DNA variation in planted and natural regenerated stands of black locust (Robinia pseudoacacia L.). Silvae Genetica, 61, 1–2. DOI: 10.1515/sg-2012-0004
  49. Liesebach, H., Yang, M.S., Schneck, V. 2004. Genetic diversity and differentiation in a black locust (Robinia pseudoacacia L.) progeny test. International Journal of Forest Genetics, 11 (2), 151–161.
  50. Malvolti, M.E., Olimpieri, I., Pollegioni, P., Cseke, K., Keserű, Z., Rédei, K. 2015. Black locust (Robinia pseudoacacia L.) root cuttings: diversity and identity revealed by SSR genotyping: A case study. South-East European Forestry, 6 (2), 201–217. DOI: 10.15177/seefor.15-19
  51. Mantovani, D., Veste, M., Freese, D. 2014. Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. New Zealand Journal of Forestry Science, 44 (1), 1–11. DOI: 10.1186/s40490-014-0029-0
  52. Mariette, S. et al. 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity, 86, 469–479. DOI: 10.1046/j.1365-2540.2001.00852.x
  53. Mariette, S. et al. 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genetica, 51 (2/3), 72–79.
  54. Maringer, J., Wohlgemuth, T., Neff, C., Pezzatti, G.B., Conedera, M. 2012. Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region. Flora – Morphology, Distribution, Functional Ecology of Plants, 207 (1), 19–29. DOI: 10.1016/j.flora.2011.07.016
  55. McKendry, P. 2002. Energy production from biomass: overview of biomass. Bioresource Technology, 83, 37–46. DOI: 10.1016/S0960-8524(01)00118-3
  56. Merceron, N.R., Lamarque, L.J., Delzon, S., Porté, A.J. 2016. Killing it softly: girdling as an efficient ecofriendly method to locally remove invasive Acer negundo. Ecological Restoration, 34 (4), 297–305. DOI: 10.3368/er.34.4.297
  57. Mishima, K., Hirao, T., Urano, S., Watanabe, A., Takata, K. 2009. Isolation and characterization of microsatellite markers from Robinia pseudoacacia L. Molecular Ecology Resources, 9 (3), 850–852. DOI: 10.1111/j.1755-0998.2008.02306.x
  58. Nasim, N. et al. 2020. Population genetic structure and diversity analysis in economically important Pandanus odorifer (Forssk.) Kuntze accessions employing ISSR and SSR markers. Industrial Crops and Products, 143, 111894. DOI: 10.1016/j.ind-crop.2019.111894
  59. Nasir, H., Iqbal, Z., Hiradate, S., Fujii, Y. 2005. Allelopathic potential of Robinia pseudoacacia L. Journal of Chemical Ecology, 31 (9), 2179–2192. DOI: 10.1007/s10886-005-6084-5
  60. Osada, T. 1997. Colored illustrations of naturalized plants of Japan. Hoikusha Publishing Co., Osaka.
  61. Program zachowania leśnych zasobów genowych i hodowli selekcyjnej drzew w Polsce na lata 2011–2035. 2011. CILP, Warszawa.
  62. Puchałka, R. et al. 2020. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 26, 15486. DOI: 10.1111/gcb.15486
  63. Puchałka, R. et al. 2023. Predicted range shifts of alien tree species in Europe. Agricultural and Forest Meteorology, 341, 109650. DOI: 10.1016/j.agrformet.2023.109650
  64. Raju, R.A. 1998. Prevalent weed flora in Peninsular India. Allied Publishers, New Delhi.
  65. Redei, K. 1998. Black-locust (Robinia pseudoacacia L.) growing in Hungary. Hungarian Forest Research Institute, Budapest, Hungary.
  66. Rédei, K., Keserü, Z., Rásó, J. 2013 Early evaluation of micropropagated black locust (Robinia pseudoacacia L.) clones in Hungary. Forest Science and Practice, 15, 81–84. DOI: 10.1007/s11632-013-0108-y
  67. Rédei, K., Osváth-Bujtás, Z., Balla, I. 2002. Clonal approaches to growing black locust (Robinia pseudoacacia) in Hungary: a review. Forestry, 75 (5), 547–552. DOI: 10.1093/forestry/75.5.547
  68. Rice, S.K., Westerman, B., Federici, R. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecology, 174 (1), 97–107. DOI: 10.1023/B:VEGE.0000046049.21900.5a
  69. Richardson, D.M., Rejmanek, M. 2011. Trees and shrubs as invasive species – a global review. Diversity and Distributions, 17 (5), 788–809. DOI: 10.1111/j.1472-4642.2011.00782.x
  70. Rijal, D.P., Falahati-Anbaran, M., Alm, T., Alsos, I.G. 2015. Microsatellite markers for Heracleum persicum (Apiaceae) and allied taxa: Application of next-generation sequencing to develop genetic resources for invasive species management. Plant Molecular Biology Reporter, 33, 1381–1390. DOI: 10.1007/s11105-014-0841-y
  71. Schuldt, B. et al. 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86–103. DOI: 10.1016/j.baae.2020.04.003
  72. Sethuraman, A. 2018. Estimating genetic relatedness in admixed populations. G3: Genes, Genomes, Genetics, 8 (10), 3203–3220. DOI: 10.1534/g3.118.200485
  73. Sharma, K.R., Puneet, S. 2006. Variation in wood characteristics of Robinia pseudoacacia Linn. managed under high density short rotation system. In: Proceedings of the IUFRO-ISTS-UHF International Conference on World Perspective on Short Rotation Forestry for Industrial and Rural Development, 7–13 September 2003, Nauni, Solan, India, 233–237. Westville Publishing House.
  74. Sun, F., Yang, M.S., Zhang, J., Gu, J.T. 2009. ISSR analysis of genetic diversity of Robinia pseudoacacia populations. Journal of Plant Genetic Resources, 10 (1), 91–96.
  75. Szyp-Borowska, I., Banha, C., Wojda, T., Szczygieł, K. 2016. Micropropagation of black locust (Robinia pseudoacacia L.) and genetic stability of long term cultivated plants. Folia Forestalia Polonica, Ser. A – Forestry, 58, 13–19. DOI: 10.1515/ffp-2016-0002
  76. Szyp-Borowska, I., Ukalska, J., Wojda, T., Sułkowska, M., Klisz, M. 2020. Micropropagation and in vitro rooting of Robinia pseudoacacia L. recalcitrant genotypes. Folia Forestalia Polonica, Ser. A – Forestry, 62 (1), 13–21. DOI: 10.2478/ffp-2020-0002
  77. Tokarska-Guzik, B. et al. 2012. Rośliny obcego pochodzenia w Polsce. Generalna Dyrekcja Ochrony Środowiska, Warszawa.
  78. Trentanovi, G., von der Lippe, M., Sitzia, T., Ziechmann, U., Kowarik, I., Cierjacks, A. 2013. Biotic homogenization at the community scale: disentangling the roles of urbanization and plant invasion. Diversity and Distributions, 19 (7), 738–748. DOI: 10.1111/ddi.12028
  79. Vítková, M., Kolbek, J. 2010. Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40 (2/3), 205–241. DOI: 10.1127/0340-269X/2010/0040-0425
  80. Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., Pyšek, P. 2017. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384, 287–302. DOI: 10.1016/j.foreco.2016.10.057
  81. Von Holle, B., Joseph, K., Largay, E.F., Lohnes, R.G. 2006. Facilitations between the introduced nitrogen-fixing tree, Robinia pseudoacacia, and non-native plant species in the glacial outwash upland ecosystem of Cape Cod, MA. Biodiversity and Conservation, 15 (7), 2197–2215. DOI: 10.1007/s10531-004-6906-8
  82. Wojda, T., Klisz, M., Jastrzębowski, S., Mionskowski, M., Szyp-Borowska, I., Szczygieł, K. 2015. The geographical distribution of the black locust (Robinia pseudoacacia L.) in Poland, and its role on non-forest land. Papers on Global Change, 22, 101–113. DOI: 10.1515/igbp-2015-0018
  83. Zajączkowski, K. 2013. Robinia akacjowa – wartościowy gatunek. Plantacyjna uprawa robinii (Black locust – valuable species. Plantation of black locust). In: Proceedings of conference – Robinia akacjowa w krajobrazie Ziemi Lubuskiej (Black Locust in the landscape of Ziemia Lubuska Province), Łagów, 73–84.
DOI: https://doi.org/10.2478/ffp-2023-0019 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 187 - 198
Submitted on: Jun 28, 2023
Accepted on: Oct 26, 2023
Published on: Dec 12, 2023
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Iwona Szyp-Borowska, Anna Zawadzka, Tomasz Wojda, Marcin Klisz, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.