Have a personal or library account? Click to login
Scots pine (Pinus sylvestris L.) reaction to climate change in the provenance tests in the north of the Russian plain Cover

Scots pine (Pinus sylvestris L.) reaction to climate change in the provenance tests in the north of the Russian plain

Open Access
|Jun 2021

References

  1. Agroecological Atlas of Russia and neighboring countries: economically significant plants, their diseases, pests and weeds. Sums of active temperatures above 10. Available at: http://www.agroatlas.ru/ru/content/Climatic_maps/Sum_t/Sum_t10/index.html (access on 20 May 2020).
  2. Beaulieu, J., Rainville, A. 2005. Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81 (5), 704–709.
  3. Briffa, K. et al. 2002. Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene, 12, 737–757. 10.1191/0959683602hl587rp
  4. Correia, I. et al. 2010. Genotype × environment interactions in Pinus pinaster at age 10 in a multi-environment trial in Portugal: a maximum likelihood approach. Annales of Forest Science, 67, 612. 10.1051/forest/2010025
  5. De la Mata, R., Voltas, J., Zas, R. 2012. Phenotypic plasticity and climatic adaptation in an Atlantic maritime pine breeding population. Annals of Forest Science, 69, 477–487. 10.1007/s13595-011-0173-0
  6. de Luis, M. et al. 2013. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis PLoS ONE, 8 (12), e83550. 10.1371/journal.pone.0083550
  7. Gömöry, D. et al. 2012. Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131, 401–411. 10.1007/s10342-011-0512-6
  8. Gray, C.A., Runyon, J.B., Jenkins, M.J. 2019.Great Basin bristlecone pine volatiles as a climate change signal across environmental gradients. Frontiers in Forests and Global Change, 2, 10. 10.3389/ffgc.2019.00010
  9. Hellmann, L. et al. 2016. Diverse growth trends and climate responses across Eurasia’s boreal forest. Environmental Research Letters, 11 (7), 074021. 10.1088/1748-9326/11/7/074021
  10. Huang, J.-G. et al. 2013. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest. PLoS ONE, 8 (2), e56758. 10.1371/journal.pone.0056758
  11. Hughes, M. et al. 2019. Different climate responses of spruce and pine growth in Northern European Russia. Dendrochronologia, 56, 1–10. 10.1016/j.dendro.2019.05.005
  12. Kapeller, S., Lexer, M.J., Geburek, T., Hiebl, J., Schueler, S. 2012. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271, 46–57. 10.1016/j.foreco.2012.01.039
  13. Keenan, R.J. 2015. Climate change impacts and adaptation in forest management: a review. Annals of Forest Science, 72, 145–167. 10.1007/s13595-014-0446-5
  14. Kijowska-Oberc, J., Staszak, A.M., Kamiński J., Ratajczak, E. 2020. Adaptation of forest trees to rapidly changing climate. Forests, 11 (2), 123. 10.3390/f11020123
  15. King, G., Gugerli, F., Fonti, P., Frank, D. 2013. Tree growth response along an elevational gradient: climate or genetics? Oecologia, 173 (4), 1587–1600. 10.1007/s00442-013-2696-6
  16. Kozubov, G.M., Bobkova, K.S. 1990. Ecological and biological bases of the forest sustainability formation in the European North (in Russian). In: Proceedings of International Symposium: Northern forests: state, dynamics, anthropogenic impact. 16–26 July 1990, Arkhangelsk, Russia, 38–46.
  17. Kurnaev, S.F. 1973. Forest vegetation zoning of the USSR (in Russian). Forest Industry, Moscow, Russia.
  18. Leites, L.P., Robinson, A.P., Rehfeldt, G.E., Marshall, J.D., Crookston, N.L. 2012. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data. Ecological Applications, 22 (1), 154–165. 10.1890/11-0150.1
  19. Matías, L., Jump, A.S. 2014. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany, 65 (1), 299–310. 10.1093/jxb/ert376
  20. Mátyás, C. 1989. Genetic and ecological restrictions of adaptation (in Russian). In: Proceedings of International Symposium: Forest genetics, selection and physiology of woody plants. 25–30 September 1989, Voronezh, Russia, 60–67.
  21. Mátyás, C. 2006. Migratory, genetic and phenetic response potential of forest tree populations facing climate change. Acta Sylvatica Lignaria Hungarica, 2, 33–46.
  22. Nakvasina, E.N. 2003. Provenance tests of Scots pine (Pinus sylvestris L.) as a natural model of climate change imitation (in Russian). Vestnik Pomorskogo Universyteta, 2 (4), 48–53.
  23. Nakvasina, E.N. 2014. Changes in the generative sphere of Scots pine under the simulating of climate warming (in Russian). Izvestia St.-Peterburgskoj Lesotekhnicheskoj Academii, 209, 114–125.
  24. Nakvasina, E.N., Bedritskaya, T.V. 1999. Seed plantations of northern ecotypes of Scots pine (in Russian). Pomor State University, Arkhangelsk, Russia.
  25. Nakvasina, E.N., Prozherina, N.A., Chuprov, A.V., Belyaev, V.V. 2018. Reaction of Scots pine growth to the climate changes in the latitudinal gradient (in Russian). Lesnoj Zhurnal, 5, 82–93. 10.17238/issn0536-1036.2018.5.82
  26. Nakvasina, E.N., Yudina, O.A., Prozherina, N.A., Kamalova, I.I., Minin, N.S. 2008. Provenance tests in gen-ecological research in the European North (in Russian). Arkhangelsk State Technical University, Arkhangelsk, Russia.
  27. Nissinen, K. et al. 2020. Growth responses of boreal Scots pine, Norway spruce and silver birch seedlings to simulated climate warming over three growing seasons in a controlled field experiment. Forests, 11, 943. 10.3390/f11090943
  28. Oleksyn, J., Reich, P.B., Zytkowiak, R., Karolewski, P., Tjoelker M.G. 2003. Nutrient conservation increases with latitude of originin European Pinus sylvestris populations. Oecologia, 136, 220–235. DOI 10.1007/s00442-003-1265-9
  29. Oleksyn, J., Tjoelker, M.G., Reich, P.B. 1998. Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fennica, 32 (2), 129–140.
  30. Pakharkova, N.V., Kuzmina, N.A., Kuzmin, S.R., Efremov, A.A. 2014. Morphophysiological traits of needles in different climatypes of Scots pine in provenance trial. Contemporary Problems of Ecology, 7, 84–89. 10.1134/S1995425514010107
  31. Persson, B. 1998. Will climate change affect the optimal choice of Pinus sylvestris provenances? Silva Fennica, 32 (2), 121–128.
  32. Prescher, F., Stihl, E.G. 1986. The effect of provenance and spacing on stem straightness and number of spike knots of Scots pine in South and Central Sweden Studia. Forestalia Suecica, 172, 12.
  33. Prokazin, E.P. 1972. Study of existing and creation of new provenance test: Program and method of work (in Russian). VNIILM, Pushkino, Russia.
  34. Prudhomme, G.O. et al. 2018. Ecophysiology and growth of white spruce seedlings from various seed sources along a climatic gradient support the need for assisted migration. Frontiers in Plant Science, 8, 1–17. 10.3389/fpls.2017.02214
  35. Rehfeldt, G.E. et al. 2002. Intraspecific responses to climate in Pinus sylvestris Global Change Biology, 8, 912–929.
  36. Rehfeldt, G.E. et al. 2003. Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models. Eurasian Journal of Research, 6 (2), 83–98.
  37. Reich, P.B., Oleksyn, J. 2008. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology Letters, 11 (6), 588–597. 10.1111/j.1461-0248.2008.01172.x
  38. Rieksts-Riekstins, J. et al. 2014. Climate suitability effect on tree growth and survival for scots pine provenance in Latvia. In: Proceedings of Annual 20th International Scientific Conference Research for Rural Development, 21–23 May 2014, Jelgava, Latvia, 2, 57–62.
  39. Savolainen, O., Bokma, F., García-Gil, R., Komulainen, P., Repo, T. 2004. Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecology and Management, 197, 79–89. 10.1016/j.foreco.2004.05.006
  40. Shutyaev, A.M., Giertych, M. 1997. Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genetica, 46 (6), 332–349.
  41. Taeger, S., Zang, C., Liesebach, M., Schneck, V., Menzel, A. 2013. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. Forest Ecology and Management, 307, 30–42. 10.1016/j.foreco.2013.06.053
  42. Ulissova, N.V. 1990. Aspects of the reproduction beginning of pine progenies of different geographical origin in the provenance test in the Vologda region (in Russian). In: Selection and seed production of conifers in the European North (ed.: V.Y. Popov). Arkhangelsk, Russia, 45–50.
  43. Velladares, F. et. al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351–1364. 10.1111/ele.12348
  44. Villeneuve, I. et al. 2016. Morpho-physiological variation of white spruce seedlings from various seed sources and implications for deployment under climate change. Frontiers in Plant Science, 7, 1–15. 10.3389/fpls.2016.01450
  45. Volosevich, I.V. 1984. Patterns of latitudinal variability of growth of woody vegetation in the forests of the European North and their practical use (in Russian). In: Forestry research on a zonal-typological basis (ed.: G.A. Chibisov). Arkhangelsk Institute of Forest and Forest Chemistry, Arkhangelsk, Russia, 27–38.
  46. Zamolodchikov, D., Kraev, G. 2016. Influence of climate change on Russian forests: recorded impacts and forecast estimates (in Russian). Ustojchivoe Lesopolzovanie, 4 (48), 23–31.
DOI: https://doi.org/10.2478/ffp-2021-0015 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 138 - 149
Submitted on: Jul 15, 2020
|
Accepted on: Mar 12, 2021
|
Published on: Jun 8, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Elena N. Nakvasina, Nadezhda A. Prozherina, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.