References
- Ali, N.A., Jackson, R.M. 1988. The effect of plant roots and their secretions on the germination of ectomycorrhizal fungal spores. Transactions of the British Mycological Society, 91 (2), 253–260.
- Antony-Babu, S. et al. 2014. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environmental Microbiology, 16 (9), 2831–2847.
- Badura, L. 2005. Mikroorganizmy glebowe i ich znaczenie w ekosystemach degradowanych przez człowieka. Inżynieria Ekologiczna, 12, 14–15.
- Baldrian, P. et al. 2012. Active and total microbial communities in forest soil are largely 463 different and highly stratified during decomposition. The ISME Journal, 6, 248–258.
- Bardgett, R.D. 2011. Plant-soil interactions in a changing world. F1000 Biological Reports 3, 16. DOI: 10.3410/B3-16
- Beckers, B., Beeck, M.O., Weyens, N., Boerjan, W., Vangronsveld, J. 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 5, 25.
- Błaszczyk, M.K. 2010. Mikrobiologia środowisk. Wydawnictwo PWN, Warszawa.
- Blom, D. et al. 2011. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 13, 3047–3058.
- Boersma, F.G.H., Warmink, J.A., Andreote, F.A., Van Elsas, J.D. 2009. Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies. Applied and Environmental Microbiology, 75, 1979–1989.
- Boersma, F.G.H., Otten, R., Warmink, J.A., Nazir, R., Van Elsas, J.D. 2010. Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds. Soil Biology and Biochemistry, 42 (12), 2137–2145.
- Citterio, B. et al. 1995. Isolation of bacteria from sporocarps of Tuber magnatum Pico, Tuber borchii Vitt. and Tuber maculatum Vitt. In: Biotechnology of ectomycorrhizae, (eds.: V. Stocchi, P. Bonfante, M. Nuti). Plenum Press, New York, 241–248.
- Clark, D.S. 1971. Studies on the surface plate method of counting bacteria. Canadian Journal of Microbiology, 17 (7), 943–946.
- Deveau, A. et al. 2007. The mycorrhiza assistant Pseudomonas fluorescens BBc6R8 has a specific stimulating effect on the growth, morphology and expression of the genes of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytologist, 175 (4), 743–755.
- Deveau, A. et al. 2016. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 26, 389–399.
- Eisenhauer, N. et al. 2017. The root biomass and secretions combine the diversity of plants with the biomass of soil bacteria and fungi. Scientific Reports, 7 (1), 1–8.
- Foster, R.C. 1988. Microenvironments of soil microorganisms. Biology and Soil Fertility, 6 (3), 189–203.
- Frey-Klett, P., Garbaye, J.A., Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.
- Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., Sarniguet, A. 2011. Bacterico-fungal interactions: links between agricultural, clinical, environmental and food microbiologists. Review of Microbiology and Molecular Biology, 75 (4), 583–609.
- Galus-Barchan, A., Paśmionka, I. 2014. The occurrence of selected microorganisms in the soil in the area of the Niepolomice Forest with particular emphasis on mould fungi. Polish Journal of Agronomy, 17, 11–17.
- Gotkowska-Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W. 2008. Microbiological contamination of the atmospheric air in and around the sewage treatment plant with an overhead pond system. Water-Environment-Rural Areas, 8, 83–98.
- Gryndler, M., Hršelová, H. 2012. Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad. Acta Mycologica, 47, 155–160.
- Gryndler, M. et al. 2013. A quest for indigenous truffle helper prokaryotes. Environmental Microbiology Reports, 5, 346–352.
- Hilszczańska, D. 2016. Polskie trufle skarb odzyskany. Centrum Informacyjne Lasów Państwowych, Warsaw, Poland.
- Hilszczańska, D., Szmidla, H., Sikora, K., Rosa-Gruszecka, A. 2019. Soil properties conducive to the formation of Tuber aestivum Vitt. fruiting bodies. Polish Journal of Environmental Studies, 28, 1713–1718.
- Kubiak, K., Wrzosek, M., Przemieniecki, S., Damszel, M., Sierota, Z. 2018. Bacteria inhabiting wood of roots and stumps in forest and arable soils. In: Endophytes of forest trees. Springer, Cham, 319–342.
- Kurek, E., Kobus, J. 1990. Beneficial and harmful influence of rhizosphere microflora on the growth and development of plants. Advances in Microbiology, 29, 103–123.
- Kim, Bo-Ra et al. 2017. Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27, 2089–2093.
- Kubiak, K., Damszel, M., Sikora, K., Przemieniecki, S., Małecka, M., Sierota, Z. 2017. Colonization of fungi and bacteria in stumps and roots of scots pine after thinning and treatment with Rotstop. Journal of Phytopathology, 165, 143–156.
- Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics (eds.: E. Stackebrandt, M. Goodfellow). John Wiley and Sons, 115–175.
- López-Mondéjar, R., Voříšková, J., Větrovský, T., Baldrian, P. 2015. The bacterial community of the temperate zone deciduous forests is vertically stratified and subject to seasonal dynamics. Soil Biology and Biochemistry, 87, 43–50.
- Lau, J.A., Lennon, J.T. 2011. Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytologist, 192 (1), 215–224.
- Lozupone, C., Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71.12, 8228–8235.
- Medinger, R. et al. 2010. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molecular Ecology, 19, 32–40.
- Mello, A. et al. 2013. Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS One, 8 (4), 61945.
- Ncbi. Available at http://www.ncbi.nlm.nih.gov/ (access on 15 November 2017).
- Pociejowska, M., Natywa, M., Gałązka, A. 2014. Stymulacja wzrostu roślin przez bakterie PGPR. Kosmos, 4, 603–610.
- Poole, E.J., Bending, G.D., Whipps, J.M., Read, D.J. 2001. Bacteria associated with Pinus sylvestris– Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytologist, 151 (3), 743–751.
- Proença, D.N. et al. 2017. Microbial endophytic, wood colonizing pine bacteria as a result of pine wilting disease. Scientific Reports, 7 (1), 1–9.
- Przemieniecki, S.W. et al. 2021. Bacterial microbiome in Armillaria ostoyae rhizomorphs inhabiting the root zone during progressively dying Scots pine. Applied Soil Ecology, 164, 103929. 10.1016/j.apsoil.2021.103929
- Rangel-Castro, I.J., Danell, E., Taylor, A.F. 2002. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius Mycorrhiza, 12 (3), 131–137.
- Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., Fiedler, H.P. 2006. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Applied and Environmental Microbiology, 72 (5), 3550–3557.
- Rosa-Gruszecka, A., Hilszczańska, D., Szmidla, H. 2014. Warunki środowiskowe sprzyjające występo-waniu trufli (Tuber spp.) na historycznych stanowiskach w Polsce. Leśne Prace Badawcze, 75, 5–11.
- Siebyła, M., Hilszczańska, D. 2020. Diversity of soil bacteria complexes associated with summer truffle (Tuber aestivum Folia Forestalia Polonica Series A – Forestry, 62 (2), 114–127. DOI: 10.2478/ffp-2020-0012
- Siebyła, M., Hilszczańska, D. Genomic analysis (Next Generation Sequencing) of bacteria in the soils of sites of naturally-occurring summer truffle (Tuber aestivum Vittad.). unpubl.
- Splivallo, R., Deveau, A., Valdez, N., Kirchhoff, N., Frey-Klett, P., Karlovsky, P. 2015. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environmental Microbiology, 17 (8), 2647–2660.
- Sosnowski, J., Król, J. 2018. Effect of synthetic plant hormones on the concentration of Ca, Mg and K in Medicago x varia T biomass. Martyn and Trifolium pratense L. Annual Set the Environment Protection Environmental Protection, 20, 1465–1479.
- Staley, C. et al. 2013. Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. Journal of Applied Microbiology, 115 (5), 1147–1158.
- Steinauer, K., Chatzinotas, A., Eisenhauer, N. 2016. Cocktails with root exudation: a link between plant diversity and soil microorganisms? Ecology and Evolution, 6 (20), 7387–7396.
- Sun, L., Qiu, F., Zhang, X., Daim, X., Dong, X., Song, W. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55 (3), 415–424.
- Tarkka, M.T., Frey-Klett, P. 2008. Mycorrhiza helper bacteria. In: Mycorrhiza (ed.: A. Varma). Springer, Berlin, Heidelberg. 10.1007/978-3-540-78826-3_6
- Tedersoo, L. et al. 2010. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188 (1), 291–301.
- Team, R.C. 2013. A language and environment for statistical computing.
- Tsukamoto, T., Murata, H., Shirata, A. 2002. Identification of non-pseudomonad bacteria from fruit bodies of wild agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii Bioscience, Biotechnology, and Biochemistry, 66 (10), 2201–2208.
- Vahdatzadeh, M., Deveau, A., Splivallo, R. 2015. The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Applied and Environmental Microbiology, 81, 6946–6952.
- Zacchi, L., Vaughan-Martini, A., Angelini, P. 2003. Yeast distribution in a truffle field ecosystem. Annals of Microbiology, 53, 275–282.