Have a personal or library account? Click to login
Antidiabetic agents as potential cytotoxic candidates for cancer therapy Cover

Antidiabetic agents as potential cytotoxic candidates for cancer therapy

Open Access
|Jun 2025

References

  1. Dąbrowski M. Diabetes, Antidiabetic Medications and Cancer Risk in Type 2 Diabetes: Focus on SGLT-2 Inhibitors. Int J Mol Sci. 2021 Feb 7;22(4):1680. https://doi.org/10.3390/ijms22041680
  2. Lancet T. GLOBOCAN 2018: counting the toll of cancer. Vol. 392, Lancet (London, England). 2018. p. 985.
  3. Duan W, Shen X, Lei J, Xu Q, Yu Y, Li R, et al. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int. 2014;2014.
  4. Kotwal A, Cheung YMM, Cromwell G, Drincic A, Leblebjian H, Quandt Z, et al. Patient-Centered Diabetes Care of Cancer Patients. Curr Diab Rep. 2021 Dec 13;21(12):62. https://doi.org/10.1007/s11892-021-01435-y
  5. Mouri Mi, Badireddy M. Hyperglycemia [Internet]. StatPearls. 2023.
  6. Ahmed GM, Abed MN, Alassaf FA. Impact of calcium channel blockers and angiotensin receptor blockers on hematological parameters in type 2 diabetic patients. Naunyn Schmiedebergs Arch Pharmacol. 2023 Sep; https://doi.org/10.1007/s00210-023-02731-y
  7. ALASSAF FA, JASIM MHM, ALFAHAD M, QAZZAZ ME, ABED MN, THANOON IAJ. Effects of Bee Propolis on FBG, HbA1c, and Insulin Resistance in Healthy Volunteers. Turkish J Pharm Sci. 2021 Sep 1;18(4):405–9. https://doi.org/10.4274/tjps.galenos.2020.50024
  8. Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel). 2019 Sep 19;11(9):1402. https://doi.org/10.3390/cancers11091402
  9. Alassaf FA, Qazzaz ME, Alfahad M, Abed MN, Jasim MHM, Thanoon IAJ. Effects of bee propolis on thyroid function tests in healthy volunteers. Trop J Pharm Res. 2022 Jan;20(4):859–63. https://doi.org/10.4314/tjpr.v20i4.28
  10. Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol. 2021 May 3;13(5):a040535. https://doi.org/10.1101/cshperspect.a040535
  11. DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020 Feb 3;2(2):127–9. https://doi.org/10.1038/s42255-020-0172-2
  12. Abed MN, Alassaf FA, Qazzaz ME. Exploring the Interplay between Vitamin D, Insulin Resistance, Obesity and Skeletal Health. J Bone Metab. 2024 May 31;31(2):75–89. https://doi.org/10.11005/jbm.2024.31.2.75
  13. Simons A, Mattson D, Dornfeld K, Spitz D. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther. 2009;5(9):2. https://doi.org/10.4103/0973-1482.55133
  14. Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology. 2021 Apr 16;2(2):36–50. https://doi.org/10.3390/diabetology2020004
  15. Yaribeygi H, Lhaf F, Sathyapalan T, Sahebkar A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci. 2019 Aug;231:116538. https://doi.org/10.1016/j.lfs.2019.06.013
  16. Akins NS, Nielson TC, Le H V. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr Top Med Chem. 2018 Jun 28;18(6):494–504. https://doi.org/10.2174/1568026618666180523111351
  17. Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion. 2019 May;46:73–90. https://doi.org/10.1016/j.mito.2018.02.009
  18. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019 Dec;150:104511. https://doi.org/10.1016/j.phrs.2019.104511
  19. Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr Relat Cancer. 2022 Dec 1;29(12):T1–13. https://doi.org/10.1530/ERC-22-0173
  20. Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022 Sep 1;7(1):305. https://doi.org/10.1038/s41392-022-01151-3
  21. Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022 Nov;86:1216–30. https://doi.org/10.1016/j.semcancer.2022.09.007
  22. Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells. 2021 Apr 29;10(5):1056. https://doi.org/10.3390/cells10051056
  23. Reiter RJ, Sharma R, Ma Q, Rosales-Corral S, Acuna-Castroviejo D, Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res. 2019 Aug 31;2(3):105–19. https://doi.org/10.32794/mr11250033
  24. García-Jiménez C, García-Martínez JM, Chocarro-Calvo A, De la Vieja A. A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose. J Mol Endocrinol. 2014 Feb;52(1):R51–66. https://doi.org/10.1530/JME-13-0152
  25. Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab. 2013 Dec 7;1(1):10. https://doi.org/10.1186/2049-3002-1-10
  26. Zhou H, Zhang B, Zheng J, Yu M, Zhou T, Zhao K, et al. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials. 2014 Feb;35(5):1597–607. https://doi.org/10.1016/j.biomaterials.2013.11.020
  27. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming Intrinsic Multidrug Resistance in Melanoma by Blocking the Mitochondrial Respiratory Chain of Slow-Cycling JARID1Bhigh Cells. Cancer Cell. 2013 Jun;23(6):811–25. https://doi.org/10.1016/j.ccr.2013.05.003
  28. Maiuri MC, Kroemer G. Essential Role for Oxidative Phosphorylation in Cancer Progression. Cell Metab. 2015 Jan;21(1):11–2. https://doi.org/10.1016/j.cmet.2014.12.013
  29. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009 Feb 15;418(1):29–37. https://doi.org/10.1042/BJ20081258
  30. SPITZ DR, SIM JE, RIDNOUR LA, GALOFORO SS, LEE YJ. Glucose Deprivation-Induced Oxidative Stress in Human Tumor Cells: A Fundamental Defect in Metabolism? Ann N Y Acad Sci. 2000 Jan 25;899(1):349–62. https://doi.org/10.1111/j.1749-6632.2000.tb06199.x
  31. Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell. 2015;60(2):195–207.
  32. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253–e2253.
  33. Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis C De, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev. 2016;2016.
  34. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.
  35. Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem. 2011;286(7):5921–33.
  36. Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. BioEssays. 2009 May 9;31(5):492–5. https://doi.org/10.1002/bies.200900005
  37. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017 Dec 13;16(1):79. https://doi.org/10.1186/s12943-017-0648-1
  38. Pliszka M, Szablewski L. Glucose Transporters as a Target for Anticancer Therapy. Cancers (Basel). 2021 Aug 20;13(16):4184. https://doi.org/10.3390/cancers13164184
  39. Pujalte-Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, et al. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol. 2024 Jan 12; https://doi.org/10.1002/1878-0261.13583
  40. Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel). 2022 Jun 30;14(13):3220. https://doi.org/10.3390/cancers14133220
  41. Schulten HJ. Pleiotropic Effects of Metformin on Cancer. Int J Mol Sci. 2018 Sep 20;19(10). https://doi.org/10.3390/ijms19102850
  42. Wu T, Horowitz M, Rayner CK. New insights into the anti-diabetic actions of metformin: from the liver to the gut. Expert Rev Gastroenterol Hepatol. 2017 Feb 26;11(2):157–66. https://doi.org/10.1080/17474124.2017.1273769
  43. Alnaser RI, Alassaf FA, Abed MN. Adulteration of hypoglycemic products: the silent threat. Rom J Med Pract. 2023;18(4):202–5. https://doi.org/10.37897/rjmp.2023.4.4
  44. Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, et al. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol. 2019 Jan 30; https://doi.org/10.3892/ijo.2019.4704
  45. Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia. 2019 Jun 22;24(2):111–23. https://doi.org/10.1007/s10911-019-09429-z
  46. Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res. 2019 Dec 12;38(1):491. https://doi.org/10.1186/s13046-019-1495-2
  47. Xue J, Li L, Li N, Li F, Qin X, Li T, et al. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol. 2019 Sep;859:172541. https://doi.org/10.1016/j.ejphar.2019.172541
  48. Kawakita E, Yang F, Kumagai A, Takagaki Y, Kitada M, Yoshitomi Y, et al. Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Mol Cancer Res. 2021 Jan 1;19(1):61–73. https://doi.org/10.1158/1541-7786.MCR-20-0115
  49. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci. 2015 Feb 10;112(6):1809–14. https://doi.org/10.1073/pnas.1417636112
  50. Wang S, Lin Y, Xiong X, Wang L, Guo Y, Chen Y, et al. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin Cancer Res. 2020 Sep 15;26(18):4921–32. https://doi.org/10.1158/1078-0432.CCR-20-0113
  51. Ma Q, Gu JT, Wang B, Feng J, Yang L, Kang XW, et al. PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur J Pharmacol. 2019;863:172696.
  52. Skuli SJ, Alomari S, Gaitsch H, Bakayoko A, Skuli N, Tyler BM. Metformin and Cancer, an Ambiguanidous Relationship. Pharmaceuticals. 2022 May 19;15(5):626. https://doi.org/10.3390/ph15050626
  53. Saengboonmee C, Sanlung T, Wongkham S. Repurposing metformin for cancer treatment: A great challenge of a promising drug. Anticancer Res. 2021;41(12):5913–8.
  54. Barrios-Bernal P, Zatarain-Barrón ZL, Hernández-Pedro N, Orozco-Morales M, Olivera-Ramírez A, Ávila-Moreno F, et al. Will We Unlock the Benefit of Metformin for Patients with Lung Cancer? Lessons from Current Evidence and New Hypotheses. Pharmaceuticals. 2022 Jun 24;15(7):786. https://doi.org/10.3390/ph15070786
  55. Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, et al. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem. 2021 May;21(8):949–62. https://doi.org/10.2174/1871520620666200918102642
  56. Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget. 2018 Nov 2;9(86):35687–704. https://doi.org/10.18632/oncotarget.26286
  57. Alghandour R, Ebrahim MA, Elshal AM, Ghobrial F, Elzaafarany M, ELbaiomy MA. Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED). Urol Oncol Semin Orig Investig. 2021 Dec;39(12):831.e1–831.e10. https://doi.org/10.1016/j.urolonc.2021.05.020
  58. Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of Metformin vs Placebo on Invasive Disease–Free Survival in Patients With Breast Cancer. JAMA. 2022 May 24;327(20):1963. https://doi.org/10.1001/jama.2022.6147
  59. Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, et al. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2021 Sep 1;7(9):1324. https://doi.org/10.1001/jamaoncol.2021.2318
  60. Bae-Jump VL, Sill M, Gehrig PA, Moxley K, Hagemann AR, Waggoner SE, et al. A randomized phase II/III study of paclitaxel/carboplatin/metformin versus paclitaxel/carboplatin/placebo as initial therapy for measurable stage III or IVA, stage IVB, or recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecol Oncol. 2020 Oct;159:7. https://doi.org/10.1016/j.ygyno.2020.06.013
  61. https://clinicaltrials.gov/study/NCT01167738.2015;
  62. Platts J. Insulin therapy and cancer risk in diabetes mellitus. Clin Med (Northfield Il). 2010 Oct 1;10(5):509–12. https://doi.org/10.7861/clinmedicine.10-5-509
  63. Home P. Insulin Therapy and Cancer. Diabetes Care. 2013 Aug 1;36(Supplement_2):S240–4. https://doi.org/10.2337/dcS13-2002
  64. Laskar J, Bhattacharjee K, Sengupta M, Choudhury Y. Anti-Diabetic Drugs: Cure or Risk Factors for Cancer? Pathol Oncol Res. 2018 Oct 13;24(4):745–55. https://doi.org/10.1007/s12253-018-0402-z
  65. Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2022 Feb 11;23(3):387–403. https://doi.org/10.1080/14656566.2021.1999413
  66. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006 Feb;29(2):254–8. https://doi.org/10.2337/diacare.29.02.06.dc05-1558
  67. Currie CJ, Poole CD, Gale EAM. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009 Sep 2;52(9):1766–77. https://doi.org/10.1007/s00125-009-1440-6
  68. Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, et al. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol. 2019 Oct;861:172598. https://doi.org/10.1016/j.ejphar.2019.172598
  69. Núñez M, Medina V, Cricco G, Croci M, Cocca C, Rivera E, et al. Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231. BMC Pharmacol Toxicol. 2013 Dec 11;14(1):6. https://doi.org/10.1186/2050-6511-14-6
  70. Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS. Glibenclamide Induces Apoptosis through Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channels and Intracellular Ca2+ Release in HepG2 Human Hepatoblastoma Cells. Biochem Biophys Res Commun. 1999 Aug;261(3):682–8. https://doi.org/10.1006/bbrc.1999.1108
  71. Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDonald T V., et al. KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines. J Biol Chem. 2000 Aug;275(34):26050–7. https://doi.org/10.1074/jbc.M001576200
  72. RU Q, TIAN X, WU YX, WU RH, PI MS, LI CY. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014 Feb;31(2):842–8. https://doi.org/10.3892/or.2013.2875
  73. Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC, Yao X. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med. 2003 Feb 1; https://doi.org/10.3892/ijmm.11.2.261
  74. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett. 2002 Dec;186(1):99–105. https://doi.org/10.1016/S0304-3835(02)00348-8
  75. Abdul M, Hoosein N. Voltage-gated potassium ion channels in colon cancer. Oncol Rep. 2002 Sep 1; https://doi.org/10.3892/or.9.5.961
  76. Qian X, Li J, Ding J, Wang Z, Duan L, Hu G. Glibenclamide exerts an antitumor activity through reactive oxygen species–c-jun NH(2)-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol. 2008 Dec;76(12):1705–15. https://doi.org/10.1016/j.bcp.2008.09.009
  77. Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016 Sep;111:76–85. https://doi.org/10.1016/j.phrs.2016.02.028
  78. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem. 2018 Apr;77:548–67. https://doi.org/10.1016/j.bioorg.2018.02.009
  79. Okumura T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol. 2010 Nov 8;45(11):1097–102. https://doi.org/10.1007/s00535-010-0310-9
  80. Du R, Lin L, Cheng D, Xu Y, Xu M, Chen Y, et al. Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis. Diabetes Metab Res Rev. 2018 Feb;34(2). https://doi.org/10.1002/dmrr.2961
  81. Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells. 2020 Jun 2;9(6):1380. https://doi.org/10.3390/cells9061380
  82. Nagamine M, Okumura T, Tanno S, Sawamukai M, Motomura W, Takahashi N, et al. PPARγ ligand-induced apoptosis through a p53-dependent mechanism in human gastric cancer cells. Cancer Sci. 2003 Apr 19;94(4):338–43. https://doi.org/10.1111/j.1349-7006.2003.tb01443.x
  83. Cellai I, Petrangolini G, Tortoreto M, Pratesi G, Luciani P, Deledda C, et al. In vivo effects of rosiglitazone in a human neuroblastoma xenograft. Br J Cancer. 2010 Feb 12;102(4):685–92. https://doi.org/10.1038/sj.bjc.6605506
  84. Luconi M, Mangoni M, Gelmini S, Poli G, Nesi G, Francalanci M, et al. Rosiglitazone impairs proliferation of human adrenocortical cancer: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2010 Mar;17(1):169–77. https://doi.org/10.1677/ERC-09-0170
  85. NINOMIYA I, YAMAZAKI K, OYAMA K, HAYASHI H, TAJIMA H, KITAGAWA H, et al. Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells. Oncol Lett. 2014 Dec;8(6):2709–14. https://doi.org/10.3892/ol.2014.2553
  86. Bloomgarden Z, Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front Endocrinol | www.frontiersin.org. 2019 [cited 2023 Oct 5];10:80. https://doi.org/10.3389/fendo.2019.00080
  87. Pantaleão SQ, Philot EA, de Resende-Lara PT, Lima AN, Perahia D, Miteva MA, et al. Structural dynamics of DPP-4 and its influence on the projection of bioactive ligands. Molecules. 2018;23(2):490.
  88. Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Vol. 14, Cancers. 2022. https://doi.org/10.3390/cancers14092072
  89. Boer GA, Holst JJ. Incretin hormones and type 2 diabetes—mechanistic insights and therapeutic approaches. Biology (Basel). 2020;9(12):473.
  90. He Y, Yang G, Yao F, Xian Y, Wang G, Chen L, et al. Sitagliptin inhibits vascular inflammation via the SIRT6-dependent signaling pathway. Int Immunopharmacol. 2019;75:105805.
  91. Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol. 2015 Aug 15;16(8):850–8. https://doi.org/10.1038/ni.3201
  92. Almagthali AG, Alkhaldi EH, Alzahrani AS, Alghamdi AK, Alghamdi WY, Kabel AM. Dipeptidyl peptidase-4 inhibitors: Anti-diabetic drugs with potential effects on cancer. Diabetes Metab Syndr Clin Res Rev. 2019 Jan;13(1):36–9. https://doi.org/10.1016/j.dsx.2018.08.012
  93. Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, et al. Dipeptidyl Peptidase IV as a Prognostic Marker and Therapeutic Target in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2017 Aug 1;102(8):2930–40. https://doi.org/10.1210/jc.2017-00346
  94. Wang Q, Lu P, Wang T, Zheng Q, Li Y, Leng SX, et al. Sitagliptin affects gastric cancer cells proliferation by suppressing Melanoma-associated antigen-A3 expression through Yes-associated protein inactivation. Cancer Med. 2020 Jun 30;9(11):3816–28. https://doi.org/10.1002/cam4.3024
  95. Yang X, Zhang X, Wu R, Huang Q, Jiang Y, Qin J, et al. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget. 2017 Jan 31;8(5):8679–92. https://doi.org/10.18632/oncotarget.14412
  96. Varela-Calviño R, Rodríguez-Quiroga M, Dias Carvalho P, Martins F, Serra-Roma A, Vázquez-Iglesias L, et al. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life. 2021 May 22;73(5):761–73. https://doi.org/10.1002/iub.2454
  97. Amritha CA, Kumaravelu P, Chellathai DD. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro study. J Clin diagnostic Res JCDR. 2015;9(12):FC14.
  98. Choi HJ, Kim JY, Lim S, Kim G, Yun HJ, Choi HS. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br J Pharmacol. 2015 Nov 16;172(21):5096–109. https://doi.org/10.1111/bph.13274
  99. Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, et al. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. Consolaro MEL, editor. PLoS One. 2015 Jul 29;10(7):e0134305. https://doi.org/10.1371/journal.pone.0134305
  100. You F, Li C, Zhang S, Zhang Q, Hu Z, Wang Y, et al. Sitagliptin inhibits the survival, stemness and autophagy of glioma cells, and enhances temozolomide cytotoxicity. Biomed Pharmacother. 2023;162:114555. https://doi.org/https://doi.org/10.1016/j.biopha.2023.114555
  101. Manea AJ, Ray SK. Regulation of autophagy as a therapeutic option in glioblastoma. Apoptosis. 2021;26(11):574–99. https://doi.org/10.1007/s10495-021-01691-z
  102. Jang JH, Baerts L, Waumans Y, De Meester I, Yamada Y, Limani P, et al. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin Exp Metastasis. 2015;32(7):677–87. https://doi.org/10.1007/s10585-015-9736-z
  103. Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, et al. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis. 2019 Apr 29;40(2):324–34. https://doi.org/10.1093/carcin/bgz009
  104. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018;59:383–94.
  105. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. The dipeptidyl peptidase-IV inhibitor gemigliptin alone or in combination with NVP-AUY922 has a cytotoxic activity in thyroid carcinoma cells. Tumor Biol. 2017;39(10):1010428317722068.
  106. Herrmann H, Sadovnik I, Cerny-Reiterer S, Rülicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014 Jun 19;123(25):3951–62. https://doi.org/10.1182/blood-2013-10-536078
  107. Willmann M, Sadovnik I, Eisenwort G, Entner M, Bernthaler T, Stefanzl G, et al. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia. Exp Hematol. 2018 Jan;57:50–59.e6. https://doi.org/10.1016/j.exphem.2017.09.012
  108. Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol. 2020;432(5):1347–66. https://doi.org/https://doi.org/10.1016/j.jmb.2019.08.009
  109. Nakatani Y, Maeda M, Matsumura M, Shimizu R, Banba N, Aso Y, et al. Effect of GLP-1 receptor agonist on gastrointestinal tract motility and residue rates as evaluated by capsule endoscopy. Diabetes Metab. 2017;43(5):430–7. https://doi.org/https://doi.org/10.1016/j.diabet.2017.05.009
  110. Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993 Jul;133(1):57–62. https://doi.org/10.1210/endo.133.1.8391428
  111. Campos R V, Lee YC, Drucker DJ. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology. 1994 May;134(5):2156–64. https://doi.org/10.1210/endo.134.5.8156917
  112. Arvanitakis K, Koufakis T, Kotsa K, Germanidis G. How Far beyond Diabetes Can the Benefits of Glucagon-like Peptide-1 Receptor Agonists Go? A Review of the Evidence on Their Effects on Hepatocellular Carcinoma. Cancers (Basel). 2022 Sep 24;14(19):4651. https://doi.org/10.3390/cancers14194651
  113. Zhou M, Mok MTS, Sun H, Chan AW, Huang Y, Cheng ASL, et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP–PKA–EGFR–STAT3 axis. Oncogene. 2017 Jul 20;36(29):4135–49. https://doi.org/10.1038/onc.2017.38
  114. Iwaya C, Nomiyama T, Komatsu S, Kawanami T, Tsutsumi Y, Hamaguchi Y, et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation. Endocrinology. 2017 Dec 1;158(12):4218–32. https://doi.org/10.1210/en.2017-00461
  115. Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 Receptor Agonist, Attenuates Prostate Cancer Growth. Diabetes. 2014 Nov 1;63(11):3891–905. https://doi.org/10.2337/db13-1169
  116. Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):657. https://doi.org/10.1186/s12885-018-4570-8
  117. Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, et al. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother. 2023 Nov;167:115629. https://doi.org/10.1016/j.biopha.2023.115629
  118. Madunić IV, Madunić J, Breljak D, Karaica D, Sabolić I. Sodium-glucose cotransporters: new targets of cancer therapy? Arch Ind Hyg Toxicol. 2018 Dec 1;69(4):278–85. https://doi.org/10.2478/aiht-2018-69-3204
  119. Helmke BM, Reisser C, Idzkoe M, Dyckhoff G, Herold-Mende C. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol. 2004 Jan;40(1):28–35. https://doi.org/10.1016/S1368-8375(03)00129-5
  120. Blessing A. Sodium/Glucose Co-transporter 1 Expression Increases in Human Diseased Prostate. J Cancer Sci Ther. 2012;04(09). https://doi.org/10.4172/1948-5956.1000159
  121. Lai B, Xiao Y, Pu H, Cao Q, Jing H, Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet. 2012 May 10;285(5):1455–61. https://doi.org/10.1007/s00404-011-2166-5
  122. Kepe V, Scafoglio C, Liu J, Yong WH, Bergsneider M, Huang SC, et al. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. J Neurooncol. 2018 Jul 10;138(3):557–69. https://doi.org/10.1007/s11060-018-2823-7
  123. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci. 2015 Jul 28;112(30). https://doi.org/10.1073/pnas.1511698112
  124. Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT Gene Expression in Primary Lung Cancers and Their Metastatic Lesions. Japanese J Cancer Res. 2001 Aug 23;92(8):874–9. https://doi.org/10.1111/j.1349-7006.2001.tb01175.x
  125. Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018 Nov 14;10(467). https://doi.org/10.1126/scitranslmed.aat5933
  126. Nipon Chattipakorn MD. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats.
  127. Sa-nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017 Oct;333:43–50. https://doi.org/10.1016/j.taap.2017.08.005
  128. Komatsu S, Nomiyama T, Numata T, Kawanami T, Hamaguchi Y, Tanaka T, et al. SGLT2 inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunction. Diabetes. 2018;67(Supplement_1).
  129. Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit Int Med J Exp Clin Res. 2017;23:3737.
  130. Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J cancer. 2018;142(8):1712–22.
  131. Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, et al. SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 2022 Dec 11;22(1):74. https://doi.org/10.1186/s12935-022-02496-z
  132. Dutka M, Bobiński R, Francuz T, Garczorz W, Zimmer K, Ilczak T, et al. SGLT-2 Inhibitors in Cancer Treatment—Mechanisms of Action and Emerging New Perspectives. Cancers (Basel). 2022 Nov 25;14(23):5811. https://doi.org/10.3390/cancers14235811
  133. Zhang Z, Xu W, Fang L, Guo S. Correlation of various lipid-lowering and hypoglycemic drugs with the risk of gastric cancer in elderly population. Trop J Pharm Res. 2023 Aug 19;22(7):1503–10. https://doi.org/10.4314/tjpr.v22i7.21
  134. Tseng CH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature. Biomolecules. 2021 Jul 13;11(7):1022. https://doi.org/10.3390/biom11071022
  135. Shuai Y, Li C, Zhou X. The effect of metformin on gastric cancer in patients with type 2 diabetes: a systematic review and meta-analysis. Clin Transl Oncol. 2020 Sep 14;22(9):1580–90. https://doi.org/10.1007/s12094-020-02304-y
  136. Zhao Z, He X, Sun Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis. Front Pharmacol. 2023 Jul 11;14. https://doi.org/10.3389/fphar.2023.1193610
  137. But A, De Bruin ML, Bazelier MT, Hjellvik V, Andersen M, Auvinen A, et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING five-country cohort study. Diabetologia. 2017 Sep 1;60(9):1691–703. https://doi.org/10.1007/s00125-017-4312-5
  138. Colmers IN, Bowker SL, Tjosvold LA, Johnson JA. Insulin use and cancer risk in patients with type 2 diabetes: A systematic review and meta-analysis of observational studies. Diabetes Metab. 2012 Dec;38(6):485–506. https://doi.org/10.1016/j.diabet.2012.08.011
  139. Tang X, Yang L, He Z, Liu J. Insulin Glargine and Cancer Risk in Patients with Diabetes: A Meta-Analysis. Baradaran HR, editor. PLoS One. 2012 Dec 19;7(12):e51814. https://doi.org/10.1371/journal.pone.0051814
  140. Du X, Zhang R, Xue Y, Li D, Cai J, Zhou S, et al. Insulin Glargine and Risk of Cancer: A Meta-Analysis. Int J Biol Markers. 2012 Jul 15;27(3):241–6. https://doi.org/10.5301/JBM.2012.9349
  141. Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer Risk Associated with Insulin Glargine among Adult Type 2 Diabetes Patients – A Nationwide Cohort Study. Federici M, editor. PLoS One. 2011 Jun 27;6(6):e21368. https://doi.org/10.1371/journal.pone.0021368
  142. Dąbrowski M, Szymańska-Garbacz E, Miszczyszyn Z, Dereziński T, Czupryniak L. Risk factors for cancer development in type 2 diabetes: A retrospective case-control study. BMC Cancer. 2016 Dec 10;16(1):785. https://doi.org/10.1186/s12885-016-2836-6
  143. Chen Y, Du L, Li L, Ma J, Geng X, Yao X, et al. Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review. J Diabetes. 2017 May 9;9(5):482–94. https://doi.org/10.1111/1753-0407.12435
  144. Zhao H, Liu Z, Zhuo L, Shen P, Lin H, Sun Y, et al. Sulfonylurea and Cancer Risk Among Patients With Type 2 Diabetes: A Population-Based Cohort Study. Front Endocrinol (Lausanne). 2022 Jun 30;13. https://doi.org/10.3389/fendo.2022.874344
  145. Olatunde A, Nigam M, Singh RK, Panwar AS, Lasisi A, Alhumaydhi FA, et al. Cancer and diabetes: the interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int. 2021 Sep 17;21(1):499. https://doi.org/10.1186/s12935-021-02202-5
  146. Bosetti C, Rosato V, Buniato D, Zambon A, La Vecchia C, Corrao G. Cancer Risk for Patients Using Thiazolidinediones for Type 2 Diabetes: A Meta-Analysis. Oncologist. 2013 Feb 1;18(2):148–56. https://doi.org/10.1634/theoncologist.2012-0302
  147. Tang H, Shi W, Fu S, Wang T, Zhai S, Song Y, et al. Pioglitazone and bladder cancer risk: a systematic review and meta-analysis. Cancer Med. 2018 Apr 24;7(4):1070–80. https://doi.org/10.1002/cam4.1354
  148. Busek P, Vanickova Z, Hrabal P, Brabec M, Fric P, Zavoral M, et al. Increased tissue and circulating levels of dipeptidyl peptidase-IV enzymatic activity in patients with pancreatic ductal adenocarcinoma. Pancreatology. 2016 Sep;16(5):829–38. https://doi.org/10.1016/j.pan.2016.06.001
  149. Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked Expansion of Exocrine and Endocrine Pancreas With Incretin Therapy in Humans With Increased Exocrine Pancreas Dysplasia and the Potential for Glucagon-Producing Neuroendocrine Tumors. Diabetes. 2013 Jul 1;62(7):2595–604. https://doi.org/10.2337/db12-1686
  150. Ueberberg S, Jütte H, Uhl W, Schmidt W, Nauck M, Montanya E, et al. Histological changes in endocrine and exocrine pancreatic tissue from patients exposed to incretin-based therapies. Diabetes, Obes Metab. 2016 Dec 26;18(12):1253–62. https://doi.org/10.1111/dom.12766
  151. Cox AR, Lam CJ, Rankin MM, Rios JS, Chavez J, Bonnyman CW, et al. Incretin Therapies Do Not Expand β-Cell Mass or Alter Pancreatic Histology in Young Male Mice. Endocrinology. 2017 Jun 1;158(6):1701–14. https://doi.org/10.1210/en.2017-00027
  152. Abd El Aziz M, Cahyadi O, Meier JJ, Schmidt WE, Nauck MA. Incretin-based glucose-lowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials. Diabetes, Obes Metab. 2020 Apr 11;22(4):699–704. https://doi.org/10.1111/dom.13924
  153. Dicembrini I, Montereggi C, Nreu B, Mannucci E, Monami M. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2020 Jan;159:107981. https://doi.org/10.1016/j.diabres.2019.107981
  154. Dicembrini I, Nreu B, Montereggi C, Mannucci E, Monami M. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol. 2020 Jun 18;57(6):689–96. https://doi.org/10.1007/s00592-020-01479-8
  155. Boniol M, Franchi M, Bota M, Leclercq A, Guillaume J, van Damme N, et al. Incretin-Based Therapies and the Short-term Risk of Pancreatic Cancer: Results From Two Retrospective Cohort Studies. Diabetes Care. 2018 Feb 1;41(2):286–92. https://doi.org/10.2337/dc17-0280
  156. Lee M, Sun J, Han M, Cho Y, Lee JY, Nam CM, et al. Nationwide Trends in Pancreatitis and Pancreatic Cancer Risk Among Patients With Newly Diagnosed Type 2 Diabetes Receiving Dipeptidyl Peptidase 4 Inhibitors. Diabetes Care. 2019 Nov 1;42(11):2057–64. https://doi.org/10.2337/dc18-2195
  157. Abrahami D, Douros A, Yin H, Yu OH, Faillie JL, Montastruc F, et al. Incretin based drugs and risk of cholangiocarcinoma among patients with type 2 diabetes: population based cohort study. BMJ. 2018 Dec 5;k4880. https://doi.org/10.1136/bmj.k4880
  158. Pech V, Abusaada K, Alemany C. Dipeptidyl Peptidase-4 Inhibition May Stimulate Progression of Carcinoid Tumor. Case Rep Endocrinol. 2015;2015:1–3. https://doi.org/10.1155/2015/952019
  159. Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, et al. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res. 2019 Feb 15;79(4):735–46. https://doi.org/10.1158/0008-5472.CAN-18-0620
  160. Kim KR, Rhee SD, Hee Youn Kim, Won Hoon Jung, Yang SD, Sung Soo Kim, et al. KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol. 2005 Jul;518(1):63–70. https://doi.org/10.1016/j.ejphar.2005.05.030
  161. Russo JW, Gao C, Bhasin SS, Voznesensky OS, Calagua C, Arai S, et al. Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer. Cancer Res. 2018 Nov 15;78(22):6354–62. https://doi.org/10.1158/0008-5472.CAN-18-0687
  162. He L, Zhang T, Sun W, Qin Y, Wang Z, Dong W, et al. The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med Oncol. 2020 Nov 1;37(11):97. https://doi.org/10.1007/s12032-020-01419-0
  163. Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016 Apr 13;8(334). https://doi.org/10.1126/scitranslmed.aad6095
  164. Tseng CH. Sitagliptin May Reduce Breast Cancer Risk in Women With Type 2 Diabetes. Clin Breast Cancer. 2017 Jun;17(3):211–8. https://doi.org/10.1016/j.clbc.2016.11.002
  165. Hsu WH, Sue SP, Liang HL, Tseng CW, Lin HC, Wen WL, et al. Dipeptidyl Peptidase 4 Inhibitors Decrease the Risk of Hepatocellular Carcinoma in Patients With Chronic Hepatitis C Infection and Type 2 Diabetes Mellitus: A Nationwide Study in Taiwan. Front Public Heal. 2021 Sep 17;9. https://doi.org/10.3389/fpubh.2021.711723
  166. Busek P, Duke-Cohan JS, Sedo A. Does DPPIV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel). 2022 Apr 21;14(9):2072. https://doi.org/10.3390/cancers14092072
  167. Bjerre Knudsen L, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, et al. Glucagon-Like Peptide-1 Receptor Agonists Activate Rodent Thyroid C-Cells Causing Calcitonin Release and C-Cell Proliferation. Endocrinology. 2010 Apr 1;151(4):1473–86. https://doi.org/10.1210/en.2009-1272
  168. Bezin J, Gouverneur A, Pénichon M, Mathieu C, Garrel R, Hillaire-Buys D, et al. GLP-1 Receptor Agonists and the Risk of Thyroid Cancer. Diabetes Care. 2023 Feb 1;46(2):384–90. https://doi.org/10.2337/dc22-1148
  169. Knapen LM, van Dalem J, Keulemans YC, van Erp NP, Bazelier MT, De Bruin ML, et al. Use of incretin agents and risk of pancreatic cancer: a population-based cohort study. Diabetes, Obes Metab. 2016 Mar 8;18(3):258–65. https://doi.org/10.1111/dom.12605
  170. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.
  171. Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60(10):1862–72. https://doi.org/10.1007/s00125-017-4370-8
  172. Dicembrini I, Nreu B, Mannucci E, Monami M. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and cancer: a meta-analysis of randomized controlled trials. Diabetes, Obes Metab. 2019;21(8):1871–7.
  173. Liu YC, Nguyen PA, Humayun A, Chien SC, Yang HC, Asdary RN, et al. Does long-term use of antidiabetic drugs changes cancer risk? Medicine (Baltimore). 2019 Oct;98(40):e17461. https://doi.org/10.1097/MD.0000000000017461
  174. Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, et al. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires). 2022 Sep 7;58(9):1239. https://doi.org/10.3390/medicina58091239
  175. Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules. 2022 Feb 24;12(3):357. https://doi.org/10.3390/biom12030357
  176. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Synergistic cytotoxicity of the dipeptidyl peptidase-IV inhibitor gemigliptin with metformin in thyroid carcinoma cells. Endocrine. 2018 Feb 28;59(2):383–94. https://doi.org/10.1007/s12020-017-1503-2
  177. Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, et al. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020 Oct 26;34(10). https://doi.org/10.1002/jbt.22547
  178. Zheng J, Xie SH, Santoni G, Lagergren J. Metformin use and risk of gastric adenocarcinoma in a Swedish population-based cohort study. Br J Cancer. 2019 Nov 12;121(10):877–82. https://doi.org/10.1038/s41416-019-0598-z
  179. Rothermundt C, Hayoz S, Templeton AJ, Winterhalder R, Strebel RT, Bärtschi D, et al. Metformin in Chemotherapy-naive Castration-resistant Prostate Cancer: A Multicenter Phase 2 Trial (SAKK 08/09). Eur Urol. 2014 Sep;66(3):468–74. https://doi.org/10.1016/j.eururo.2013.12.057
  180. Handelsman Y, LeRoith D, Bloomgarden ZT, Dagogo-Jack S, Einhorn D, Garber AJ, et al. Diabetes and Cancer—An AACE/ACE Consensus Statement. Endocr Pract. 2013 Jul;19(4):675–93. https://doi.org/10.4158/EP13248.CS
  181. Scharping NE, Menk A V., Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol Res. 2017 Jan 1;5(1):9–16. https://doi.org/10.1158/2326-6066.CIR-16-0103
  182. Zhan ZT, Liu L, Cheng MZ, Gao Y, Zhou WJ. The Effects of 6 Common Antidiabetic Drugs on Anti-PD1 Immune Checkpoint Inhibitor in Tumor Treatment. Xu B, editor. J Immunol Res. 2022 Aug 18;2022:1–24. https://doi.org/10.1155/2022/2651790
  183. Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, et al. Phase II clinical trial of metformin as a cancer stem cell–targeting agent in ovarian cancer. JCI insight. 2020;5(11).
  184. Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, et al. Metformin clinical trial in HPV+ and HPV–head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front Oncol. 2018;8:436.
  185. Gutkind JS, Molinolo AA, Wu X, Wang Z, Nachmanson D, Harismendy O, et al. Inhibition of mTOR signaling and clinical activity of metformin in oral premalignant lesions. JCI insight. 2021;6(17).
  186. Durai L, Ravindran S, Arvind K, Karunagaran D, Vijayalakshmi R. Synergistic effect of metformin and vemurufenib (PLX4032) as a molecular targeted therapy in anaplastic thyroid cancer: an in vitro study. Mol Biol Rep. 2021 Nov 30;48(11):7443–56. https://doi.org/10.1007/s11033-021-06762-7
  187. Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev. 2021 Sep 17;40(3):865–78. https://doi.org/10.1007/s10555-021-09977-z
  188. Jang J, Lee TJ, Sung EG, Song IH, Kim JY. Dapagliflozin induces apoptosis by downregulating cFILP L and increasing cFILP S instability in Caki-1 cells. Oncol Lett. 2022 Sep 22;24(5):401. https://doi.org/10.3892/ol.2022.13521
  189. Xu D, Zhou Y, Xie X, He L, Ding J, Pang S, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int J Oncol. 2020 Sep 8; https://doi.org/10.3892/ijo.2020.5120
  190. Li H, Tong CWS, Leung Y, Wong MH, To KKW, Leung KS. Identification of Clinically Approved Drugs Indacaterol and Canagliflozin for Repurposing to Treat Epidermal Growth Factor Tyrosine Kinase Inhibitor-Resistant Lung Cancer. Front Oncol. 2017 Nov 29;7. https://doi.org/10.3389/fonc.2017.00288
  191. Zhou J, Zhu J, Yu SJ, Ma HL, Chen J, Ding XF, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020 Dec;132:110821. https://doi.org/10.1016/j.biopha.2020.110821
  192. Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, et al. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol. 2023 Sep 8;6(1):919. https://doi.org/10.1038/s42003-023-05289-w
DOI: https://doi.org/10.2478/fco-2023-0041 | Journal eISSN: 1792-362X | Journal ISSN: 1792-345X
Language: English
Page range: 68 - 89
Submitted on: Mar 16, 2024
Accepted on: Aug 16, 2024
Published on: Jun 10, 2025
Published by: Helenic Society of Medical Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Raniah I. Alnaser, Fawaz A. Alassaf, Mohammed N. Abed, published by Helenic Society of Medical Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.