Have a personal or library account? Click to login
Apocrine carcinoma of the breast: Review Cover
By: Chieh Yang,  Irene Wang and  Yun Yen  
Open Access
|Sep 2023

References

  1. Mossler JA, Barton TK, Brinkhous AD, McCarty KS, Moylan JA, McCarty KS Jr. Apocrine differentiation in human mammary carcinoma. Cancer. 1980;46(11):2463–2471. doi:10.1002/1097-0142(19801201)46:11<2463::aidcncr2820461127>3.0.co;2-#
  2. Eusebi V, Millis RR, Cattani MG, Bussolati G, Azzopardi JG. Apocrine carcinoma of the breast. A morphologic and immunocytochemical study [published correction appears in Am J Pathol 1986 Sep;124(3): following 563]. Am J Pathol. 1986;123(3):532–541.
  3. Durham JR, Fechner RE. The Histologic Spectrum of Apocrine Lesions of the Breast. Am J Clin Pathol. 2000;113(suppl_1):S3–S18. doi:10.1309/7A2P-YMWJ-B1PD-UDN9
  4. Vranic S, Schmitt F, Sapino A, et al. Apocrine carcinoma of the breast: a comprehensive review. Histol Histopathol. 2013;28(11):1393–1409. doi:10.14670/HH-28.1393
  5. Selim AG, El-Ayat G, Wells CA. c-erbB2 oncoprotein expression, gene amplification, and chromosome 17 aneusomy in apocrine adenosis of the breast. J Pathol. 2000;191(2):138–142. doi:10.1002/(SICI)1096-9896(200006)191:2<138::AID-PATH611>3.0.CO;2-J
  6. Choi J, Jung WH, Koo JS. Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol. 2012;27(11):1481–1493. doi:10.14670/HH-27.1481
  7. Vranic S, Tawfik O, Palazzo J, et al. EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Mod Pathol. 2010;23(5):644–653. doi:10.1038/modpathol.2010.50
  8. Dellapasqua S, Maisonneuve P, Viale G, et al. Immunohistochemically defined subtypes and outcome of apocrine breast cancer. Clin Breast Cancer. 2013;13(2):95–102. doi:10.1016/j.clbc.2012.11.004
  9. Matsuo K, Fukutomi T, Tsuda H, Kanai Y, Tanaka SA, Nanasawa T. Apocrine Carcinoma of the Breast: Clinicopathological Analysis and Histological Subclassification of 12 Cases. Breast Cancer. 1998;5(3):279–284. doi:10.1007/BF02966708
  10. Honma N, Sakamoto G, Akiyama F, et al. Breast carcinoma in women over the age of 85: distinct histological pattern and androgen, oestrogen, and progesterone receptor status. Histopathology. 2003;42(2):120–127. doi:10.1046/j.1365-2559.2003.01542.x
  11. Gilles R, Lesnik A, Guinebretière JM, et al. Apocrine carcinoma: clinical and mammographic features. Radiology. 1994;190(2):495–497. doi:10.1148/radiology.190.2.8284405
  12. D’Arcy C, Quinn C. Apocrine lesions of the breast: part 1 of a two-part review: benign, atypical and in situ apocrine proliferations of the breast. J Clin Pathol. 2019;72(1):1–6. doi:10.1136/jclinpath-2018-205484
  13. Tavassoli FA, Norris HJ. Intraductal apocrine carcinoma: a clinicopathologic study of 37 cases. Mod Pathol. 1994;7(8):813–818.
  14. Carter DJ, Rosen PP. Atypical apocrine metaplasia in sclerosing lesions of the breast: a study of 51 patients. Mod Pathol. 1991;4(1):1–5.
  15. Fuehrer N, Hartmann L, Degnim A, et al. Atypical apocrine adenosis of the breast: long-term follow-up in 37 patients. Arch Pathol Lab Med. 2012;136(2):179–182. doi:10.5858/arpa.2011-0225-OA
  16. Calhoun, B.C., & Booth, C.N. (2014). Atypical apocrine adenosis diagnosed on breast core biopsy: implications for management. Human pathology, 45 10, 2130–5.
  17. Leal C, Henrique R, Monteiro P, et al. Apocrine ductal carcinoma in situ of the breast: histologic classification and expression of biologic markers. Hum Pathol. 2001;32(5):487–493. doi:10.1053/hupa.2001.24327
  18. Chen YY, Hwang ES, Roy R, et al. Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol. 2009;33(11):1683–1694. doi:10.1097/PAS.0b013e3181b18a89
  19. Xu Y, Zhang W, He J, et al. Nomogram for predicting overall survival in patients with triple-negative apocrine breast cancer: Surveillance, epidemiology, and end results-based analysis. Breast. 2022;66:8–14. doi:10.1016/j.breast.2022.08.011
  20. Farmer P, Bonnefoi H, Becette V, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–4671. doi:10.1038/sj.onc.1208561
  21. D’Arcy C, Quinn CM. Apocrine lesions of the breast: part 2 of a two-part review. Invasive apocrine carcinoma, the molecular apocrine signature and utility of immunohistochemistry in the diagnosis of apocrine lesions of the breast. J Clin Pathol. 2019;72(1):7–11. doi:10.1136/jclinpath-2018-205485
  22. Vranic S, Gatalica Z, Deng H, et al. ER-α36, a novel isoform of ER-α66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast. J Clin Pathol. 2011;64(1):54–57. doi:10.1136/jcp.2010.082776
  23. Bratthauer GL, Lininger RA, Man YG, Tavassoli FA. Androgen and estrogen receptor mRNA status in apocrine carcinomas. Diagn Mol Pathol. 2002;11(2):113–118. doi:10.1097/00019606-200206000-00008
  24. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A. 2006;103(24):9063–9068. doi:10.1073/pnas.0603339103
  25. Zhang XT, Kang LG, Ding L, Vranic S, Gatalica Z, Wang ZY. A positive feedback loop of ER-α36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene. 2011;30(7):770–780. doi:10.1038/onc.2010.458
  26. Lehmann-Che J, Hamy AS, Porcher R, et al. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res. 2013;15(3):R37. Published 2013 May 11. doi:10.1186/bcr3421
  27. Wells CA, El-Ayat GA. Non-operative breast pathology: apocrine lesions. J Clin Pathol. 2007;60(12):1313–1320. doi:10.1136/jcp.2006.040626
  28. Arciero CA, Diehl AH 3rd, Liu Y, et al. Triple-negative apocrine carcinoma: A rare pathologic subtype with a better prognosis than other triple-negative breast cancers. J Surg Oncol. 2020;122(6):1232–1239. doi:10.1002/jso.26129
  29. Ismail S, Kherbek H, Skef J, Zahlouk N, Abdulal R, Alshehabi Z. Triple-negative apocrine carcinoma as a rare cause of a breast lump in a Syrian female: a case report and review of the literature. BMC Womens Health. 2021;21(1):396. Published 2021 Nov 25. doi:10.1186/s12905-021-01539-3
  30. Darb-Esfahani S, von Minckwitz G, Denkert C, et al. Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer. 2014;14:546. Published 2014 Jul 28. doi:10.1186/1471-2407-14-546
  31. Vranic S, Marchiò C, Castellano I, et al. Immunohistochemical and molecular profiling of histologically defined apocrine carcinomas of the breast. Hum Pathol. 2015;46(9):1350–1359. doi:10.1016/j.humpath.2015.05.017
  32. Mazoujian G, Pinkus GS, Davis S, Haagensen DE Jr. Immunohistochemistry of a gross cystic disease fluid protein (GCDFP-15) of the breast. A marker of apocrine epithelium and breast carcinomas with apocrine features. Am J Pathol. 1983;110(2):105–112.
  33. Honma N, Takubo K, Akiyama F, et al. Expression of GCDFP-15 and AR decreases in larger or node-positive apocrine carcinomas of the breast. Histopathology. 2005;47(2):195–201. doi:10.1111/j.1365-2559.2005.02181.x
  34. Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyers CL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell. 2004;6(5):517–527. doi:10.1016/j.ccr.2004.09.031
  35. Darb-Esfahani S, von Minckwitz G, Denkert C, et al. Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer. 2014;14:546. Published 2014 Jul 28. doi:10.1186/1471-2407-14-546
  36. Nakamura H, Kukita Y, Kunimasa K, et al. α-Methylacyl-CoA racemase: a useful immunohistochemical marker of breast carcinoma with apocrine differentiation. Hum Pathol. 2021;116:39–48. doi:10.1016/j.humpath.2021.07.005
  37. Sun X, Zuo K, Yao Q, et al. Invasive apocrine carcinoma of the breast: clinicopathologic features and comprehensive genomic profiling of 18 pure triple-negative apocrine carcinomas. Mod Pathol. 2020;33(12):2473–2482. doi:10.1038/s41379-020-0589-x
  38. Shi W, Jiang T, Nuciforo P, et al. Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial [published correction appears in Ann Oncol. 2018 Apr 1;29(4):1075] [published correction appears in Ann Oncol. 2018 Oct 1;29(10):2152] [published correction appears in Ann Oncol. 2019 Jan 9;:]. Ann Oncol. 2017;28(1):128–135. doi:10.1093/annonc/mdw434
  39. McNamara KM, Yoda T, Miki Y, et al. Androgenic pathway in triple negative invasive ductal tumors: its correlation with tumor cell proliferation. Cancer Sci. 2013;104(5):639–646. doi:10.1111/cas.12121
  40. O’Malley FP, Bane A. An update on apocrine lesions of the breast. Histopathology. 2008;52(1):3–10. doi:10.1111/j.1365-2559.2007.02888.x
  41. Yerushalmi R, Hayes MM, Gelmon KA. Breast carcinoma--rare types: review of the literature. Ann Oncol. 2009;20(11):1763–1770. doi:10.1093/annonc/mdp245
  42. Dusenbery AC, Maniaci JL, Hillerson ND, Dill EA, Bullock TN, Mills AM. MHC Class I Loss in Triple-negative Breast Cancer: A Potential Barrier to PD-1/PD-L1 Checkpoint Inhibitors. Am J Surg Pathol. 2021;45(5):701–707. doi:10.1097/PAS.0000000000001653
  43. Vranic S, Gatalica Z. An Update on the Molecular and Clinical Characteristics of Apocrine Carcinoma of the Breast. Clin Breast Cancer. 2022;22(4):e576–e585. doi:10.1016/j.clbc.2021.12.009
  44. Arciero CA, Diehl AH 3rd, Liu Y, et al. Triple-negative apocrine carcinoma: A rare pathologic subtype with a better prognosis than other triple-negative breast cancers. J Surg Oncol. 2020;122(6):1232–1239. doi:10.1002/jso.26129
  45. Mills AM, E Gottlieb C, M Wendroth S, M Brenin C, Atkins KA. Pure Apocrine Carcinomas Represent a Clinicopathologically Distinct Androgen Receptor-Positive Subset of Triple-Negative Breast Cancers. Am J Surg Pathol. 2016;40(8):1109–1116. doi:10.1097/PAS.0000000000000671
  46. Xu Y, Zhang W, He J, et al. Nomogram for predicting overall survival in patients with triple-negative apocrine breast cancer: Surveillance, epidemiology, and end results-based analysis. Breast. 2022;66:8–14. doi:10.1016/j.breast.2022.08.011
  47. Wu W, Wu M, Peng G, Shi D, Zhang J. Prognosis in triple-negative apocrine carcinomas of the breast: A population-based study. Cancer Med. 2019;8(18):7523–7531. doi:10.1002/cam4.2634
  48. Meattini I, Pezzulla D, Saieva C, et al. Triple Negative Apocrine Carcinomas as a Distinct Subtype of Triple Negative Breast Cancer: A Case-control Study. Clin Breast Cancer. 2018;18(5):e773–e780. doi:10.1016/j.clbc.2018.02.012
  49. Japaze H, Emina J, Diaz C, et al. ‘Pure’ invasive apocrine carcinoma of the breast: a new clinicopathological entity?. Breast. 2005;14(1):3–10. doi:10.1016/j.breast.2004.06.003
  50. Imamovic D, Bilalovic N, Skenderi F, et al. A clinicopathologic study of invasive apocrine carcinoma of the breast: A single-center experience. Breast J. 2018;24(6):1105–1108. doi:10.1111/tbj.13140
  51. Choi JE, Kang SH, Lee SJ, Bae YK. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer. Ann Surg Oncol. 2015;22(1):82–89. doi:10.1245/s10434-014-3984-z
  52. He J, Peng R, Yuan Z, et al. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol. 2012;29(2):406–410. doi:10.1007/s12032-011-9832-0
  53. Ni M, Chen Y, Lim E, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–131. doi:10.1016/j.ccr.2011.05.026
  54. Naderi A, Hughes-Davies L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor-negative breast cancer. Neoplasia. 2008;10(6):542–548. doi:10.1593/neo.08274
  55. Naderi A, Meyer M, Dowhan DH. Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia. 2012;14(4):283–296. doi:10.1593/neo.12294
  56. Lee YT, Liu HM, Lee LH, et al. The polymorphism of CAG repeats in the androgen receptor gene and breast cancer mortality. Cancer Biomark. 2015;15(6):815–822. doi:10.3233/CBM-150525
  57. Kasami M, Gobbi H, Dupont WD, Simpson JF, Page DL, Vnencak-Jones CL. Androgen receptor CAG repeat lengths in ductal carcinoma in situ of breast, longest in apocrine variety. Breast. 2000;9(1):23–27. doi:10.1054/brst.1999.0070
  58. Santonja A, Sánchez-Muñoz A, Lluch A, et al. Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy. Oncotarget. 2018;9(41):26406–26416. Published 2018 May 29. doi:10.18632/oncotarget.25413
  59. Echavarria I, López-Tarruella S, Picornell A, et al. Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clin Cancer Res. 2018;24(8):1845–1852. doi:10.1158/1078-0432.CCR-17-1912
  60. Mohammed AA, Elsayed FM, Algazar M, Rashed HE, Anter AH. Neoadjuvant Chemotherapy in Triple Negative Breast Cancer: Correlation between Androgen Receptor Expression and Pathological Response. Asian Pac J Cancer Prev. 2020;21(2):563–568. Published 2020 Feb 1. doi:10.31557/APJCP.2020.21.2.563
  61. Bonnefoi H, MacGrogan G, Poncet C, et al. Molecular apocrine tumours in EORTC 10994/BIG 1-00 phase III study: pathological response after neoadjuvant chemotherapy and clinical outcomes. Br J Cancer. 2019;120(9):913–921. doi:10.1038/s41416-019-0420-y
  62. Altundag K. De-escalating systemic chemotherapy might be considered for pure triple negative apocrine breast cancer patients. J BUON. 2019;24(2):864.
  63. Vranic S, Feldman R, Gatalica Z. Apocrine carcinoma of the breast: A brief update on the molecular features and targetable biomarkers. Bosn J Basic Med Sci. 2017;17(1):9–11. Published 2017 Feb 21. doi:10.17305/bjbms.2016.1811
  64. Gucalp A, Tolaney S, Isakoff SJ, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res. 2013;19(19):5505–5512. doi:10.1158/1078-0432.CCR-12-3327
  65. Lu Q, Xia W, Lee K, et al. Bicalutamide plus Aromatase Inhibitor in Patients with Estrogen Receptor-Positive/Androgen Receptor-Positive Advanced Breast Cancer. Oncologist. 2020;25(1):21–e15. doi:10.1634/theoncologist.2019-0564
  66. Cipriano É, Mesquita A. Emerging Therapeutic Drugs in Metastatic Triple-Negative Breast Cancer. Breast Cancer (Auckl). 2021;15:11782234211002491. Published 2021 Mar 22. doi:10.1177/11782234211002491
  67. Bonnefoi H, Grellety T, Tredan O, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–818. doi:10.1093/annonc/mdw067
  68. Traina, T. A., Miller, K., Yardley, D. A., Eakle, J., Schwartzberg, L. S. & O’Shaughnessy, J. et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J. Clin. Oncol. 36, 884–890 (2018).
  69. Weisman PS, Ng CK, Brogi E, et al. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod Pathol. 2016;29(5):476–488. doi:10.1038/modpathol.2016.39
  70. Lehmann BD, Bauer JA, Schafer JM, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406. Published 2014 Aug 8. doi:10.1186/s13058-014-0406-x
  71. Lehmann BD, Abramson VG, Sanders ME, et al. TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR+ Metastatic Triple-Negative Breast Cancer. Clin Cancer Res. 2020;26(9):2111–2123. doi:10.1158/1078-0432.CCR-19-2170
  72. Asghar US, Barr AR, Cutts R, et al. Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clin Cancer Res. 2017;23(18):5561–5572. doi:10.1158/1078-0432.CCR-17-0369
  73. Ferguson DC, Mata DA, Tay TK, et al. Androgen receptor splice variant-7 in breast cancer: clinical and pathologic correlations. Mod Pathol. 2022;35(3):396–402. doi:10.1038/s41379-021-00924-5
  74. Hickey TE, Irvine CM, Dvinge H, et al. Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget. 2015;6(42):44728–44744. doi:10.18632/oncotarget.6296
  75. Hickey TE, Robinson JL, Carroll JS, Tilley WD. Minireview: The androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene?. Mol Endocrinol. 2012;26(8):1252–1267. doi:10.1210/me.2012-1107
  76. Schwartz CJ, Ruiz J, Bean GR, et al. Triple-Negative Apocrine Carcinomas: Toward a Unified Group With Shared Molecular Features and Clinical Behavior. Mod Pathol. 2023;36(5):100125. doi:10.1016/j.modpat.2023.100125
DOI: https://doi.org/10.2478/fco-2023-0007 | Journal eISSN: 1792-362X | Journal ISSN: 1792-345X
Language: English
Page range: 52 - 61
Submitted on: Jun 7, 2023
Accepted on: Jul 31, 2023
Published on: Sep 15, 2023
Published by: Helenic Society of Medical Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Chieh Yang, Irene Wang, Yun Yen, published by Helenic Society of Medical Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.