Have a personal or library account? Click to login
An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization Cover

An enhanced differential evolution algorithm with adaptation of switching crossover strategy for continuous optimization

Open Access
|Jun 2020

References

  1. [1] Al-Dabbagh R. D., Neri F., Idris N., Baba M. S., Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy, Swarm and Evolutionary Computation, 43, 2018, 284-311.10.1016/j.swevo.2018.03.008
  2. [2] Boussa¨ıd I., Lepagnot J., Siarry P., A survey on optimization metaheuristics, Information sciences, 237, 2013, 82–117.10.1016/j.ins.2013.02.041
  3. [3] Brest J., Greiner S., Bokovi B., Mernik M.,Žumer V., Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Trans Evol Comput, 10, 6, 2006, 646-657.10.1109/TEVC.2006.872133
  4. [4] Das S., Konar A., Chakraborty U. K., Two improved differential evolution schemes for faster global search, in : Proceedings of the 2005 conference on genetic and evolutionary computation, 2005, 991-998.10.1145/1068009.1068177
  5. [5] Das S., Mullick S.S., Suganthan P., Recent advances in differential evolution-An updated survey, Swarm and Evolutionary Computation, 27, 2016, 1-30.10.1016/j.swevo.2016.01.004
  6. [6] Dennis J. E., Schnabel R. B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM,Philadelphia, 1996.10.1137/1.9781611971200
  7. [7] Gamperle R., Muller S. D., Koumoutsakos P., A parameter study for differential evolution, in: A. Gremla, N. E. Mastorakis (eds.), Advances in intelligent systems, fuzzy systems, evolutionary computation, WSEAS Press, Interlaken, 2002, 293-298.
  8. [8] Hamm L., Brorsen B. W., Hagan M. T., Comparison of stochastic global optimization methods to estimate neural network weights, Neural Process Lett, 26, 2007, 145-158.10.1007/s11063-007-9048-7
  9. [9] Hirsch M. J., Pardalos P. M., Resende M. G. C., Solving systems of nonlinear equations with continuous GRASP, Nonlinear Analysis: Real World Applications, 10, 2009, 2000–2006.10.1016/j.nonrwa.2008.03.006
  10. [10] Lampinen J., Zelinka I., On stagnation of the differential evolution algorithm, in: R. Matouek, P. Omera (eds.), Proceedings of Mendel 2000, 6th international conference on soft computing, 2000, 76-83.
  11. [11] Leon M., Xiong N., Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters, Journal of artificial intelligence and soft computing research, 6, 2, 2016, 103-118.10.1515/jaiscr-2016-0009
  12. [12] Li W., Li S., Chen Z., Zhong L., Ouyang C., Self-feedback differential evolution adapting to fitness landscape characteristics, Soft Comput, 23, 2019, 1151–1163.10.1007/s00500-017-2833-y
  13. [13] Mallipeddi R., Suganthan P. N., Empirical study on the e ect of population size on differential evolution algorithm, in: Proceeding of the IEEE congress on evolutionary computation (CEC-2008), 2008, 3663–3670.10.1109/CEC.2008.4631294
  14. [14] Meintjes K., Morgan A., Chemical equilibrium systems as numerical test problems, ACM Transaction on Mathematical Software, 16, 1990, 143–151.10.1145/78928.78930
  15. [15] Mezura-Montes E., Velzquez-Reyes J., Coello Coello C. A., A comparative study of differential evolution variants for global optimization, in: Proceedings of the 8th annual genetic and evolutionary computation conference (GECCO-2006), 2006, 485-492.10.1145/1143997.1144086
  16. [16] Morgan A., Shapiro V., Box-bisection for solving second-degree systems and the problem of clustering, ACM Transaction on Mathematical Software, 13, 1987, 152–167.10.1145/328512.328521
  17. [17] Nanda S. J., Panda G., A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm and Evolutionary Computation, 16, 2014, 1-18.10.1016/j.swevo.2013.11.003
  18. [18] Neri F., Tirronen V., Recent advances in differential evolution: A survey and experimental analysis, Artif Intell Rev, 33, 2010, 61-106.10.1007/s10462-009-9137-2
  19. [19] Oliveira H. A., Petraglia A., Solving nonlinear systems of functional equations with fuzzy adaptive simulated annealing, Applied Soft Computing, 13, 2013, 4349–4357.10.1016/j.asoc.2013.06.018
  20. [20] Ortega J. M., Rheinboldt W. C., Iterative solution of nonlinear equations inseveral variables, SIAM, Philadelphia, 2000.10.1137/1.9780898719468
  21. [21] Pramanik S., Kinematic synthesis of a six-member mechanism for automotive steering, ASME Journal of Mechanical Design, 124, 2002, 642–645.10.1115/1.1503372
  22. [22] Qin A.K., Huang V. L., Suganthan P. N., Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans Evol Comput, 13, 2, 2009, 398-417.10.1109/TEVC.2008.927706
  23. [23] Ronkkonen J., Kukkonen S., Price K. V., Real parameter optimization with differential evolution, in : Proceedings of the IEEE congress evolutionary computation (CEC-2005) vol 1, IEEE Press, 2005, 506-513.
  24. [24] Storn R., Differential evolution research-trends and open questions, in: U. K. Chakraborty (ed.), Advances in Differential Evolution, Springer, Berlin, 2008, 1-31.10.1007/978-3-540-68830-3_1
  25. [25] Storn R., Price K., Differential evolution – A simple and e cient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012, ICSI, 1995.
  26. [26] Storn R., Price K., Differential evolution: A simple and e cient heuristic for global optimization over continuous spaces, J Glob Optim, 11, 4, 1997, 341–359.10.1023/A:1008202821328
  27. [27] Venter G., Review of optimization techniques, in: R. Blockley, S. Wei (eds.), Encyclopedia of aerospace engineering, Wiley and Sons, 2010, doi: 10.1002/9780470686652.eae495.10.1002/9780470686652.eae495
  28. [28] Verschelde J., Verlinden P., Cools R., Homotopies exploiting newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal, 31, 1994, 915–930.10.1137/0731049
  29. [29] Wongpen J., Wetweerapong J., Puphasuk P., Finding a maximum clique in social networks using a modified differential evolution algorithm, WSEAS Transactions on Systems and Control, 14, 2019, 333–342.
  30. [30] Zhang J., Sanderson A. C., JADE: adaptive differential evolution with optional external archive, IEEE Trans Evol Comput, 13, 5, 2009, 945-958.10.1109/TEVC.2009.2014613
  31. [31] Zielinski K., Weitkemper P., Laur R., Kammeyer K., Parameter study for differential evolution using a power allocation problem including interference cancellation, in: IEEE congress on evolutionary computation (CEC-2006), 2006, 1857-1864.
DOI: https://doi.org/10.2478/fcds-2020-0007 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 97 - 124
Submitted on: Feb 7, 2020
Accepted on: May 16, 2020
Published on: Jun 29, 2020
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Pikul Puphasuk, Jeerayut Wetweerapong, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.