Have a personal or library account? Click to login
Spiking Neural Network Based on Cusp Catastrophe Theory Cover
Open Access
|Aug 2019

References

  1. [1] Chen D. D., Chen X. J., Zhang K., An Exploratory Statistical Cusp Catastrophe Model, IEEE International Conference on Data Science and Advanced Analytics, pp. 100-109, 2016.10.1109/DSAA.2016.17
  2. [2] Cheng H.-P. et al., Understanding the design of IBM neurosynaptic system and its tradeoffs: A user perspective, Design, Automation & Test in Europe Conference & Exhibition, IEEE, 2017.10.23919/DATE.2017.7926972
  3. [3] Davis M. et al, Loihi, Neuromorphic Manycore Processor with On-Chip Learning, IEEE Micro, vol. 38, Issue 1, pp. 82-99, 2018.10.1109/MM.2018.112130359
  4. [4] Enríquez-Gaytán J., Gómez-Castañeda F., Moreno-Cadenas J.A., Flores-Nava L.M., Experimental Spiking Neural Network: Solving the XOR Paradigm with Metaheuristics, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) Mexico City, Mexico, 2018.10.1109/ICEEE.2018.8533911
  5. [5] Esposito C., Castiglione A., Pop F., Choo K. R., Challenges of Connecting Edge and Cloud Computing: A Security and Forensic Perspective, IEEE Cloud Computing, vol. 4, no. 2, pp. 13-17, March-April 2017.10.1109/MCC.2017.30
  6. [6] Frenkel Ch. et al., A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28 nm CMOS, IEEE Transactions on Biomedical Circuits and Systems, 2018.
  7. [7] Luo Q. Fu, Y., Liu J., Qiu J. Bi, S., Cao Y., Ding X., Improving Learning Algorithm Performance for Spiking Neural Networks, 17th IEEE International Conference on Communication Technology, 2017.
  8. [8] Hodgkin A. L., Huxley A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol. 117, pp. 500-544, 1952.10.1113/jphysiol.1952.sp004764139241312991237
  9. [9] Chang R. Hu, S., Wang H., Huang J. He, Q., Efficient Multispike Learning for Spiking Neural Networks Using Probability-Modulated Timing Method, IEEE Transactions on Neural Networks and Learning Systems, 2018.
  10. [10] Izhikevich E. M., Simple Model of Spiking Neurons, IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1569-1572, 2003.10.1109/TNN.2003.820440
  11. [11] Jain R., Tata S., Cloud to Edge: Distributed Deployment of Process-Aware IoT Applications, 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, HI, 2017, pp. 182-189.10.1109/IEEE.EDGE.2017.32
  12. [12] Joubert A., Belhadj B., Temam O., Héliot R., Hardware spiking neurons design: analog or digital?, The 2012 International Joint Conference on Neural Networks.10.1109/IJCNN.2012.6252600
  13. [13] Rato R., Coito F., Spike HW Computing, Champalimaud NeuroScience Symposium, 2013, DOI: 10.13140/2.1.3802.2723.
  14. [14] Reljan-Delaney M., Wall J., Solving the Linearly Inseparable XOR Problem with Spiking Neural Networks, Computing Conference 2017, 2017.10.1109/SAI.2017.8252173
  15. [15] Sourikopoulos I., Hedayat S., Loyez Ch., Danneville1 F., Hoel V., Mercier E., Cappy A., A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology, Frontiers in Neuroscience, 2017.10.3389/fnins.2017.00123535127228360831
  16. [16] Szczęsny S., Current-Mode FPAA with CMRR Elimination and Low Sensitivity to Mismatch, Circuits, Systems and Signal Processing, vol. 36, Issue 7, pp. 2672-2696, 2017.10.1007/s00034-016-0449-6
  17. [17] Szczęsny S., High Speed and Low Sensitive Current-Mode CMOS Perceptron, Microelectronic Engineering, vol. 165, pp. 41-51, 2016.10.1016/j.mee.2016.08.010
  18. [18] Wu X., Saxena V., Zhu K., Balagopal S., A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning, IEEE Transatcions on Circuits and Systems II: Express Briefs, vol. 62, Issue 11, 2015.10.1109/TCSII.2015.2456372
  19. [19] Zapata M., Balaji U. K., Madrenas J., PSoC-Based Real-Time Data Acquisition for a Scalable Spiking Neural Network Hardware Architecture, IEEE Third Ecuador Technical Chapters Meeting, pp. 1-6, 2018.10.1109/ETCM.2018.8580286
  20. [20] Zhang M., Qu H., Belatreche A., Chen Y., Yi Z., A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons, IEEE Transactions on Neural Networks and Learning Systems, vol. 30, Issue 1, pp. 123-137, 2019.10.1109/TNNLS.2018.283307729993588
DOI: https://doi.org/10.2478/fcds-2019-0014 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 273 - 284
Submitted on: Jan 14, 2019
Accepted on: Jun 28, 2019
Published on: Aug 28, 2019
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Damian Huderek, Szymon Szczęsny, Raul Rato, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.