Have a personal or library account? Click to login
Software Measurement and Defect Prediction with Depress Extensible Framework Cover

Software Measurement and Defect Prediction with Depress Extensible Framework

Open Access
|Dec 2014

References

  1. [1] M. D'Ambros and M. Lanza, “Distributed and Collaborative Software Evolution Analysis with Churrasco,” Sci. Comput. Program., vol. 75, pp. 276-287, Apr. 2010.10.1016/j.scico.2009.07.005
  2. [2] G. Ghezzi and H. C. Gall, “Distributed and collaborative software analysis,” in Collaborative software engineering (I. Mistrik, J. Grundy, A. van der Hoek, and J. Whitehead, eds.), pp. 241-263, Heidelberg, Germany: Springer, January 2010.10.1007/978-3-642-10294-3_12
  3. [3] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.10.1145/1656274.1656278
  4. [4] R. Ihaka and R. Gentleman, “R: A language for data analysis and graphics,” Journal of computational and graphical statistics, vol. 5, no. 3, pp. 299-314, 1996.10.1080/10618600.1996.10474713
  5. [5] M. U. Guide, “The mathworks,” Inc., Natick, MA, vol. 5, 1998.
  6. [6] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, “KNIME: The Konstanz Information Miner,” in Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007), Springer, 2007.10.1007/978-3-540-78246-9_38
  7. [7] D. Morent, K. Stathatos, W.-C. Lin, and M. R. Berthold, “Comprehensive PMML preprocessing in KNIME,” in Proceedings of the 2011 workshop on Predictive markup language modeling, PMML '11, (New York, NY, USA), pp. 28-31, ACM, 2011.10.1145/2023598.2023602
  8. [8] Data Mining Group, “PMML Powered.” http://www.dmg.org/products.html, 2012.
  9. [9] T. Meinl and G. Landrum, “Get your chemistry right with knime,” Journal of Cheminformatics, vol. 5, no. Suppl 1, p. F1, 2013.10.1186/1758-2946-5-S1-F1
  10. [10] W. A. Warr, “Scientific workow systems: Pipeline Pilot and KNIME,” Journal of computer-aided molecular design, pp. 1-4, 2012.
  11. [11] M. P. Mazanetz, R. J. Marmon, C. B. Reisser, and I. Morao, “Drug Discovery Applications for KNIME: An Open Source Data Mining Platform,” Current topics in medicinal chemistry, vol. 12, no. 18, pp. 1965-1979, 2012.
  12. [12] M. Jureczko and J. Magott, “QualitySpy: a framework for monitoring software development processes,” Journal of Theoretical and Applied Computer Science, vol. 6, no. 1, pp. 35-45, 2012.
  13. [13] Marian Jureczko and contributors, “Quality Spy.” http://java.net/projects/qualityspy.
  14. [14] The Apache Software Foundation, “Apache License, Version 2.0.” http://www.apache.org/licenses/LICENSE-2.0.html.
  15. [15] N. Fenton, P. Krause, M. Neil, and C. Lane, “A Probabilistic Model for Software Defect Prediction,” 2001.10.1007/3-540-44652-4_39
  16. [16] N. E. Fenton and M. Neil, “Software metrics: success, failures and new directions,” J. Syst. Softw., vol. 47, pp. 149-157, July 1999.10.1016/S0164-1212(99)00035-7
  17. [17] Agena, “Agenarisk Desktop.” <http://www.agenarisk.com>.
  18. [18] S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1 - The FAMOOS Information Exchange Model,” tech. rep., University of Berne, 2001.
  19. [19] TIOBE, “Programming Community Index.” http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, 10 2013.
  20. [20] Black Duck Software, “Ohloh Index.” https://www.ohloh.net/languages.
  21. [21] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with Evolizer and ChangeDistiller,” IEEE Software, vol. 26, no. 1, pp. 26-33, 2009.10.1109/MS.2009.6
  22. [22] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change distilling: Tree differencing for fine-grained source code change extraction,” IEEE Transactions on Software Engineering, vol. 33, pp. 725-743, NOV 2007.10.1109/TSE.2007.70731
  23. [23] The Eclipse Foundation, “Eclipse.” http://www.eclipse.org/.
  24. [24] G. Ghezzi and H. C. Gall, “SOFAS: A Lightweight Architecture for Software Analysis as a Service,” in 2011 Ninth Working IEEE/IFIP Conference on Software Architecture, pp. 93-102, IEEE, June 2011.10.1109/WICSA.2011.21
  25. [25] W3C, “Sparql query language for rdf.” http://www.w3.org/TR/rdf-sparql-query/.
  26. [26] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database from version control and bug tracking systems,” in Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on, pp. 23-32, IEEE, 2003.
  27. [27] L. Madeyski and N. Radyk, “Judy-a mutation testing tool for Java,” Software, IET, vol. 4, no. 1, pp. 32-42, 2010. http://madeyski.e-informatyka.pl/download/Madeyski10b.pdf.10.1049/iet-sen.2008.0038
  28. [28] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming the equivalent mutant problem: A systematic literature review and a comparative experiment of second order mutation,” IEEE Transactions on Software Engineering, vol. 40, pp. 23-42, January 2014. http://dx.doi.org/10.1109/TSE.2013.44.10.1109/TSE.2013.44
  29. [29] L. Madeyski, Test-Driven Development: An Empirical Evaluation of Agile Practice. (Heidelberg, London, New York): Springer, 2010. http://www.springer.com/978-3-642-04287-4.
  30. [30] L. Madeyski, “The impact of test-first programming on branch coverage and mutation score indicator of unit tests: An experiment,” Information and Software Technology, vol. 52, no. 2, pp. 169-184, 2010. Draft: http://madeyski.e-informatyka.pl/download/Madeyski10c.pdf.10.1016/j.infsof.2009.08.007
  31. [31] L. Madeyski, “The impact of pair programming on thoroughness and fault detection effectiveness of unit tests suites,” Software Process: Improvement and Practice, vol. 13, no. 3, pp. 281-295, 2008. Draft: <http://madeyski.e-informatyka.pl/download/Madeyski08.pdf>.10.1002/spip.382
  32. [32] JaCoCo. http://www.eclemma.org/jacoco/.
  33. [33] F. Sauer, “Eclipse metrics plugin.” http://metrics.sourceforge.net/.
  34. [34] Checkstyle. http://checkstyle.sourceforge.net/, 2007.
  35. [35] PMD. http:/pmd.sourceforge.net/.
  36. [36] PIT. http:/pitest.org/.
  37. [37] FindBugs. http:/findbugs.sourceforge.net/.
  38. [38] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.10.1109/32.295895
  39. [39] N. Nagappan, B. Murphy, and V. Basili, “The inuence of organizational structure on software quality: an empirical case study,” in Proceedings of the 30th international conference on Software engineering, pp. 521-530, ACM, 2008.10.1145/1368088.1368160
  40. [40] Atlassian, “REST Plugin Module.”
  41. [41] TMate Software, “SVNKit.” http://svnkit.com/.
  42. [42] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2014.
  43. [43] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 3rd ed., 2011.
  44. [44] G. Williams, M. Hahsler, H. Ishwaran, U. B. Kogalur, and R. Guha, pmml: Package 'pmml', 2012. R package version 1.2.32.
  45. [45] BIRT. http://www.eclipse.org/birt/phoenix/.
  46. [46] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component failures,” in Proceedings of the 28th international conference on Software engineering, pp. 452-461, ACM, 2006.10.1145/1134285.1134349
  47. [47] L. Madeyski and M. Majchrzak, “ImpressiveCode DePress (Defect Prediction for software systems) Extensible Framework,” 2012. Available as an open source project from GitHub: https://github.com/ImpressiveCode/ic-depress.
  48. [48] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The PROMISE Repository of empirical software engineering data,” June 2012.
  49. [49] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard to defect prediction,” in Proceedings of the 6th International Conference on Predictive Models in Software Engineering, PROMISE '10, (New York, NY, USA), pp. 9:1-9:10, ACM, 2010.10.1145/1868328.1868342
  50. [50] L. Madeyski and M. Jureczko, “Which Process Metrics Can Significantly Improve Defect Prediction Models? An Empirical Study,” Software Quality Journal, 2014. DOI: 10.1007/s11219-014-9241-7 (accepted), preprint: http://madeyski.e-informatyka.pl/download/Madeyski14SQJ.pdf.10.1007/s11219-014-9241-7
  51. [51] D. De Roure, C. Goble, and R. Stevens, “The design and realisation of the myexperiment virtual research environment for social sharing of workows,” Future Generation Computer Systems, vol. 25, pp. 561-567, 2009.10.1016/j.future.2008.06.010
  52. [52] Free Software Foundation, Inc., “GNU General Public License.” http://www.gnu.org/licenses/gpl-3.0.en.html.
  53. [53] GitHub Inc. http://www.github.com.
  54. [54] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in GitHub: transparency and collaboration in an open software repository,” in Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, CSCW '12, (New York, NY, USA), pp. 1277-1286, ACM, 2012.
  55. [55] M. Majchrzak and L. Madeyski, “DePress JIRA.” https://depress.atlassian.net/browse/DEP, 2013.
  56. [56] L. Madeyski and M. Majchrzak, “DePress GitHub Issues.” https://github.com/ImpressiveCode/ic-depress/issues, 2012.
  57. [57] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, “Change Bursts as Defect Predictors,” in Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pp. 309 -318, nov. 2010.10.1109/ISSRE.2010.25
DOI: https://doi.org/10.2478/fcds-2014-0014 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 249 - 270
Published on: Dec 20, 2014
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Lech Madeyski, Marek Majchrzak, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.