References
- Ciężak, P., & Rdzanek, A. (2020). Corrosion monitoring of aircraft based on the corrosion prognostic health management (CPHM) system. Journal of KONBiN, 50(4), 205–216. https://doi.org/10.2478/jok-2020-0082
- Cusati, V., Corcione, S., & Memmolo, V. (2021). Impact of structural health monitoring on aircraft operating costs by multidisciplinary analysis. Sensors, 21(20), 6938. https://doi.org/10.3390/s21206938
- Demo, J., Andrews, C., Friedersdorf, F., Morgan, A., & Jostes, L. (2013). Deployment of a wireless corrosion monitoring system for aircraft applications. 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 1–10. https://doi.org/10.1109/AERO. 2013.6496924
- Friedersdorf, F. J., Demo, J. C., Brown, N. K., & Kramer, P. C. (2019). Electrochemical sensors for continuous measurement of corrosion and coating system performance in outdoor and accelerated atmospheric tests. In S. Papavinasam, R. B. Rebak, L. Yang, & N. S. Berke (Eds.), Advances in electrochemical techniques for corrosion monitoring and laboratory corrosion measurements (pp. 91–113). ASTM International. https://doi.org/10.1520/stp160920170222
- Herzberg, E., Acton, C., Chan, T., Guo, S., Lai, A., & Stroh, R. (2019). Estimated impact of corrosion on cost and availability of DOD weapon systems – FY19 update. LMI.
- Hoen-Velterop, L. (2017). Assessing the corrosion environment severity helicopters encounter using environmental sensors. Department of Defense – Allied Nations Technical Corrosion Conference. Paper No. 2017-400177.
- Li, L., Chakik, M., & Prakash, R. (2021). A review of corrosion in aircraft structures and graphene-based sensors for advanced corrosion monitoring. Sensors, 21(9), 2908. https://doi.org/10.3390/s21092908
- National Transportation Safety Board. (1988). Aircraft accident report: Aloha Airlines Flight 243 (Boeing 737-200) (Report No. PB89-910404). National Technical Information Service.
- Rakas, J., Bauranov, A., & Messika, B. (2018). Failures of critical systems at airports: Impact on aircraft operations and safety. Safety Science, 110, 141–157. https://doi.org/10.1016/j.ssci.2018.05.022
- Tzortzinis, G., Knickle, B. T., Bardow, A., Breña, S. F., & Gerasimidis, S. (2020a). Strength evaluation of deteriorated girder ends. I: Experimental study on naturally corroded I-beams. Thin-Walled Structures, 107220. https://doi.org/10.1016/j.tws.2020.107220
- Tzortzinis, G., Knickle, B. T., Bardow, A., Breña, S. F., & Gerasimidis, S. (2020b). Strength evaluation of deteriorated girder ends. II: Numerical study on corroded I-beams. Thin-Walled Structures, 107216. https://doi.org/10.1016/j.tws.2020.107216
- United States Government Accountability Office. (2019). Defense Management: observations on changes to the reporting structure for DOD’s corrosion office and its implementation of GAO recommendations (Report to Congressional Committees, GAO-19-513). United States Government Accountability Office.
- Wright, R. F., Lu, P., Devkota, J., Lu, F., Ziomek-Moroz, M., & Ohodnicki, P. R. (2019). Corrosion sensors for structural health monitoring of oil and natural gas infrastructure: A review. Sensors, 19(18), 3964. https://doi.org/10.3390/s19183964