Amaro, R. L., Rustagi, N., Findley, K. O., Drexler, E. S., & Slifka, A. J. (2014). Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen. International Journal of Fatigue, 59, 262–271. https://doi.org/10.1016/j.ijfatigue.2013.08.010.
Benachour, M., Belmokhtar, A., Benchour, N., & Benguediab, M. (2015). Enhanced Exponential Fatigue Crack Growth Model for Al-alloy. AASCIT Journal of Materials, 1(3), 57–63.
Bergner, F. (2001). The material-dependent variability of fatigue crack growth rates of aluminium alloys in the Paris regime. International Journal of Fatigue, 23(5), 383–394. https://doi.org/10.1016/s0142-1123(01)00006-8
Borges, M. F., Lopez-Crespo, P., Antunes, F. V., Moreno, B., Prates, P., Camas, D., & Neto, D. M. (2021). Fatigue crack propagation analysis in 2024-T351 aluminium alloy using nonlinear parameters. International Journal of Fatigue, 153, 106478. https://doi.org/10.1016/j.ijfatigue.2021.106478
Correia, J. A. F. O., De Jesus, A. M. P., Moreira, P. M. G. P., & Tavares, P. J. S. (2016). Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Model. Advances in Materials Science and Engineering, 2016, 1–11. https://doi.org/10.1155/2016/3026745
De Iorio, A., Grasso, M., Penta, F., & Pucillo, G. P. (2012). A three-parameter model for fatigue crack growth data analysis. Frattura ed Integrità Strutturale, 6(21), 21–29. https://doi.org/10.3221/igf-esis.21.03
Forman R.G., & Metto, S.R. (1990). Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6A1-4V alloy. National Aeronautics and Space Administration, Lyndon B. Johnson Space Center.
Grasso, M., Penta, F., Pinto, P., & Pucillo, G. P. (2013). A four-parameters model for fatigue crack growth data analysis. Frattura ed Integrità Strutturale, 7(26), 69–79. https://doi.org/10.3221/igf-esis.26.08
Heuler, P., & Schütz, W. (1986). Assessment of concepts for Fatigue Crack initiation and propagation life prediction. Materialwissenschaft und Werkstofftechnik, 17(11), 397–405. https://doi.org/10.1002/mawe.19860171105
Jiang, S., Zhang, W., Li, X., & Sun, F. (2014). An Analytical Model for Fatigue Crack Propagation Prediction with Overload Effect. Mathematical Problems in Engineering, 2014, 1–9. https://doi.org/10.1155/2014/713678
Kameia, K., & Khan, M. A. (2020). Influence of Temperature on Fatigue Crack Growth and Structural Dynamics. TESConf 2020 – 9th International Conference on Through-life Engineering Services. http://dx.doi.org/10.2139/ssrn.3717712.
Kebir, T., Benguediab, M., & Abdellatif, I. (2017). Influence of the variability of the elastics properties on plastic zone and fatigue crack growth. Mechanics and Mechanical Engineering, 21(4), 919–934.
Khelil, F., Aour, B., Belhouari, M., & Benseddiq, N. (2013). Modeling of Fatigue Crack Propagation in Aluminum Alloys Using an Energy Based Approach. Engineering, Technology & Applied Science Research, 3(4), 488–496. https://doi.org/10.48084/etasr.329
Koyama, M., Eguchi, T., & Tsuzaki, K. (2021). Fatigue Crack Growth at Different Frequencies and Temperatures in an Fe-based Metastable High-entropy Alloy. ISIJ International, 61(2), 641–647. https://doi.org/10.2355/isijinternational.isijint-2020-504
Li, H. F., Zhang, P., Wang, B., & Zhang, Z. F. (2022). Predictive fatigue crack growth law of high-strength steels. Journal of Materials Science & Technology, 100, 46–50. https://doi.org/10.1016/j.jmst.2021.04.042
Maruschak, P., Vorobel, R., Student, O., Ivasenko, I., Krechkovska, H., Berehulyak, O., Mandziy, T., Svirska, L., & Prentkovskis, O. (2021). Estimation of Fatigue Crack Growth Rate in Heat-Resistant Steel by Processing of Digital Images of Fracture Surfaces. Metals, 11(11), 1776. https://doi.org/10.3390/met11111776
Mohanty, J., Verma, B., & Ray, P. (2009). Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading). International Journal of Fatigue, 31(3), 418–424. https://doi.org/10.1016/j.ijfatigue.2008.07.015
Mohanty, J. R., Verma, B. B., & Ray, P. K. (2009a). Prediction of fatigue life with interspersed mode-I and mixed-mode (I and II) overloads by an exponential model: Extensions and improvements. Engineering Fracture Mechanics, 76(3), 454–468. https://doi.org/10.1016/j.engfracmech.2008.12.001.
Noroozi, A., Glinka, G., & Lambert, S. (2007). A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue, 29(9-11), 1616–1633. https://doi.org/10.1016/j.ijfatigue.2006.12.008
Paris, P., & Erdogan, F. (1963). A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering, 85(4), 528–533. https://doi.org/10.1115/1.3656900
Quan, H., Alderliesten, R. C., & Benedictus, R. (2018). The stress ratio effect on plastic dissipation during fatigue crack growth. MATEC Web of Conferences, 165, 13002. https://doi.org/10.1051/matecconf/201816513002
Ritchie, R. O. (1988). Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science and Engineering: A, 103(1), 15–28. https://doi.org/10.1016/0025-5416(88)90547-2
Ritchie, R. O. (1999). Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 100(1), 55–83. https://doi.org/10.1023/a:1018655917051
Tzamtzis, A., & Kermanidis, A. T. (2015). Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties. Frattura ed Integrità Strutturale, 10(35), 396–404. https://doi.org/10.3221/igf-esis.35.45
Walker, K. (b. d.). The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. In: Effects of Environment and Complex Load History on Fatigue Life (s. 1–1–14). ASTM International. https://doi.org/10.1520/stp32032s
Wang, Y., Charbal, A., Hild, F., Roux, S., & Vincent, L. (2019). Crack initiation and propagation under thermal fatigue of austenitic stainless steel. International Journal of Fatigue, 124, 149–166. https://doi.org/10.1016/j.ijfatigue.2019.02.036
Xu, L., Yu, X., Hui, L., & Zhou, S. (2017). Fatigue life prediction of aviation aluminium alloy based on quantitative pre-corrosion damage analysis. Transactions of Nonferrous Metals Society of China, 27(6), 1353–1362. https://doi.org/10.1016/s1003-6326(17)60156-0
Zerbst, U., & Klinger, C. (2019). Material defects as cause for the fatigue failure of metallic components. International Journal of Fatigue, 127, 312–323. https://doi.org/10.1016/j.ijfatigue.2019.06.024