Have a personal or library account? Click to login
Experimental and Numerical Stress State Assesment in Refill Friction Stir Spot Welding Joints Cover

Experimental and Numerical Stress State Assesment in Refill Friction Stir Spot Welding Joints

Open Access
|Jul 2022

References

  1. [1] Schilling, C. and dos Santos, J. (2004). “Method and device for joining at least two adjoining work pieces by friction welding,” US6722556B2, Apr. 20, 2004 Accessed: Nov. 28, 2020. [Online]. Available: https://patents.google.com/patent/US6722556B2/en.
  2. [2] Dong, Z., Hu, W., Ai, X. and Lv, Z. (2019). Effect of Rotation Speed on Intermetallic Compounds and Failure Load of RFSSW-ed Dissimilar Al/Mg. Trans Indian Inst Met, 72(9), 2249–2256, doi: 10.1007/s12666-019-01672-6.
  3. [3] Cao, J.Y., Wang, M., Kong, L., Zhao, H.X. and Chai, P. (2017). Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy. Materials Characterization, 128, 54–62, doi: 10.1016/j.matchar.2017.03.023.
  4. [4] Jambhale, S., Kumar, S. and Kumar, S. (2020). A Novel Flat Friction Stir Spot Welding of Triple Sheet Dissimilar Aluminium Alloys: Analyzing Mechanical Properties and Residual Stresses at Weld Region. Trans Indian Inst Met, 73(9), 2205–2220, doi: 10.1007/s12666-020-02025-4.
  5. [5] Lin, S., Deng, Y.L., Lin, H.Q. et al. (2018). Microstructure, mechanical properties and stress corrosion behavior of friction stir welded joint of Al–Mg–Si alloy extrusion. Rare Met., doi: 10.1007/s12598-018-1126-7.
  6. [6] Li, G., Zhou, L., Luo, L., Wu, X. and Guo, N. (2019). Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. Journal of Materials Research and Technology, 8(5), 4115–4129, doi: 10.1016/j.jmrt.2019.07.021.
  7. [7] Wang, S. et al., (2020). Strengthening and toughening mechanisms in refilled friction stir spot welding of AA2014 aluminum alloy reinforced by graphene nanosheets. Materials & Design, 186, 108212, doi: 10.1016/j.matdes.2019.108212.
  8. [8] Kubit, A., Trzepiecinski, T., Faes, K., Drabczyk, M., Bochnowski, W. and Korzeniowski, M. (2019). Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM. Fatigue & Fracture of Engineering Materials & Structures, 42(6), 1308–1321, doi: 10.1111/ffe.12984.
  9. [9] Kluz, R., Kubit, A. and Wydrzyński, D. (2018). The Effect of Plunge Depth on the Strength Properties of Friction Welded Joints Using the RFSSW Method. Adv. Sci. Technol. Res. J., 12(1), 41–47, doi: 10.12913/22998624/76547.
  10. [10] Kubit, A., Trzepiecinski, T., Bochnowski, W., Drabczyk, M. and Faes, K. (2019). Analysis of the mechanism of fatigue failure of the Refill Friction Stir Spot Welded overlap joints. Archives of Civil and Mechanical Engineering, 19(4), 1419–1430, doi: 10.1016/j.acme.2019.09.004.
  11. [11] Jedrasiak, P. and Shercliff, H.R. (2019). Small strain finite element modelling of friction stir spot welding of Al and Mg alloys. Journal of Materials Processing Technology, 263, 207–222, doi: 10.1016/j.jmatprotec.2018.07.031.
  12. [12] Meyghani, B., Awang, M.B., Emamian, S.S., Mohd Nor, M.K.B. and Pedapati, S.R. (2017). A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW). Metals, 7(10), 450, doi: 10.3390/met7100450.
  13. [13] Meyghani, B., Awang, M. and Wu, C.S. (2020). Finite element modeling of friction stir welding (FSW) on a complex curved plate. Journal of Advanced Joining Processes, 1, 100007, doi: 10.1016/j.jajp.2020.100007.
  14. [14] Yu, M., Li, W.Y., Li, J.L. and Chao, Y.J. (2012). Modelling of entire friction stir welding process by explicit finite element method. Materials Science and Technology, 28(7), 812–817, doi: 10.1179/1743284711Y.0000000087.
  15. [15] He, X., Gu, F. and Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1–66, doi: 10.1016/j.pmatsci.2014.03.003.
  16. [16] Yunus, M. and Alsoufi, M.S. (2018). Mathematical Modelling of a Friction Stir Welding Process to Predict the Joint Strength of Two Dissimilar Aluminium Alloys Using Experimental Data and Genetic Programming. Modelling and Simulation in Engineering, 2018. https://www.hindawi.com/journals/mse/2018/4183816/ (accessed Nov. 30, 2020).10.1155/2018/4183816
  17. [17] Yang, H., Yang, H. and Hu, X. (2015).Simulation on the plunge stage in refill friction stir spot welding of Aluminum Alloys. In Proceedings of the 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering 2015. doi: 10.2991/icmmcce-15.2015.105.
  18. [18] Cao, J.Y., Wang, M., Kong, L., Yin, Y.H. and Guo, L.J. (2017). Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6. Int J Adv Manuf Technol, 89(5), 2129–2139, doi: 10.1007/s00170-016-9247-3.
  19. [19] D’Urso, G. and Giardini, C. (2016). Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses. Materials, 9(8), 689, doi: 10.3390/ma9080689.551235528773810
  20. [20] D’Urso, G. (2015). Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: Experimental and FEM analysis. Journal of Manufacturing Processes, 17, 108–119, doi: 10.1016/j.jmapro.2014.08.004.
  21. [21] Malik, V., Sanjeev, N.K., Hebbar, H.S. and Kailas, S.V. (2014). Finite Element Simulation of Exit Hole Filling for Friction Stir Spot Welding – A Modified Technique to Apply Practically. Procedia Engineering, 97, 1265–1273, doi: 10.1016/j.proeng. 2014.12.405.
  22. [22] Yang, X. et al. (2018). Numerical modelling and experimental investigation of thermal and material flow in probeless friction stir spot welding process of Al 2198-T8. Science and Technology of Welding and Joining, 23(8), 704–714, doi: 10.1080/13621718.2018. 1469832.
  23. [23] Atharifar, H., Lin, D. and Kovacevic, R. (2009). Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding. J. of Materi Eng and Perform, 18(4), 339–350, doi: 10.1007/s11665-008-9298-1.
  24. [24] Chen, G., Shi, Q. and Zhang, S. (2018). Recent Development and Applications of CFD Simulation for Friction Stir Welding. In Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, Brian G. Thomas (Eds.) CFD Modeling and Simulation in Materials Processing 2018, (113–118), Springer, doi: 10.1007/978-3-319-72059-3_11.
  25. [25] Muci-Küchler, K.H., Kalagara, S. and Arbegast, W.J. (2010). Simulation of a Refill Friction Stir Spot Welding Process Using a Fully Coupled Thermo-Mechanical FEM Model. J. Manuf. Sci. Eng, 132(1), doi: 10.1115/1.4000881.
  26. [26] Kubit, A. and Trzepiecinski, T. (2020). A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075-T6 aluminium alloy sheets. Archiv. Civ. Mech. Eng, 20(4), 117, doi: 10.1007/s43452-020-00127-w.
  27. [27] Borino, G., Fratini, L. and Parrinello, F. (2009). Mode I failure modeling of friction stir welding joints. Int J Adv Manuf Technol, 41(5), 498–503, doi: 10.1007/s00170-008-1498-1.
  28. [28] Venukumar, S. Yalagi, S. and Muthukumaran, S. (2013). Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Transactions of Nonferrous Metals Society of China, 23(10), 2833–2842, doi: 10.1016/S1003-6326(13)62804-6.
  29. [29] Rosendo, T. et al. (2011). Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy. Materials & Design, 32(3), 1094–1100, doi: 10.1016/j.matdes.2010.11.017.
DOI: https://doi.org/10.2478/fas-2021-0006 | Journal eISSN: 2300-7591 | Journal ISSN: 2081-7738
Language: English
Page range: 54 - 71
Published on: Jul 28, 2022
Published by: ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Elżbieta Gadalińska, Andrzej Kubit, Tomasz Trzepieciński, Grzegorz Moneta, published by ŁUKASIEWICZ RESEARCH NETWORK – INSTITUTE OF AVIATION
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.