Aljanabi, M., Ghazi, M., Ali, A. H., & Saad Abas, A. (2023). ChatGPTs: Open possibilities. Iraqi Journal for Computer Science and Mathematics, 4(1), 62–64. https://doi.org/10.52866/20ijcsm.2023.01.01.0018
Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, Volume 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
Colace, F., Santo, M. D., Lombardi, M., Pascale, F., Pietrosanto, A., & Lemma, S. (2018). Chatbot for e-learning: A case of study. International Journal of Mechanical Engineering and Robotics Research, 7(5), 528–533. https://doi.org/10.18178/ijmerr.7.5.528-533
Ely, D. P. (1999). Conditions that facilitate the implementation of educational technology innovations. Educational Technology, 39(6), 23–27. https://www.jstor.org/stable/44428566
Iseke-Barnes, J. M. (1996). Issues of educational uses of the internet: Power and criticism in communications and searching. Journal of Educational Computing Research, 15(1), 1–23. https://doi.org/10.2190/FLYP-YNQC-9T55-MKB5
Johri, A., Katz, A. S., Qadir, J., & Hingle, A. (2023). Generative artificial intelligence and engineering education. Journal of Engineering Education, 112(3), 572–577. https://doi.org/10.1002/jee.20537
Koh, E., & Doroudi, S. (2023). Learning, teaching, and assessment with generative artificial intelligence: Towards a plateau of productivity. Learning: Research and Practice, 9(2), 109–116. https://doi.org/10.1080/23735082.2023.2264086
Laato, S., Morschheuser, B., Hamari, J., & Björne, J. (2023). AI-Assisted learning with ChatGPT and large language models: Implications for higher education. 2023 IEEE International Conference on Advanced Learning Technologies (ICALT), Orem, UT, USA, 10–13 July 2023, (pp. 226–230). https://doi.org/10.1109/ICALT58122.2023.00072
Miller, R. L. (2015). Rogers' innovation diffusion theory (1962, 1995). In R. L. Miller (Ed.), Information seeking behavior and technology adoption: Theories and trends (pp. 261–274). IGI Global.
Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T., Luxton-Reilly, A., MacNeil, S., Petersen, A., Pettit, R., Reeves, B. N., & Savelka, J. (2023). The robots are here: Navigating the Generative AI revolution in computing education. Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education, 108–159. https://doi.org/10.1145/3623762.3633499
Rajala, J., Hukkanen, J., Hartikainen, M., & Niemelä, P. (2023). “Call me Kiran” – ChatGPT as a tutoring chatbot in a computer science course. Proceedings of the 26th International Academic Mindtrek Conference, Tampere, Finland, October 2023 (pp. 83–94). https://doi.org/10.1145/3616961.3616974
Schiff, D. (2021). Out of the laboratory and into the classroom: The future of artificial intelligence in education. Ai & Society, 36(1), 331–348. https://doi.org/10.1007/s00146-020-01033-8
Sohail, S. S., Farhat, F., Himeur, Y., Nadeem, M., Madsen, D. Ø, Singh, Y., Atalla, S., & Mansoor, W. (2023). Decoding ChatGPT: A taxonomy of existing research, current challenges, and possible future directions. https://doi.org/10.48550/ARXIV.2307.14107
South, L., Saffo, D., Vitek, O., Dunne, C., & Borkin, M. A. (2022). Effective use of Likert scales in visualization evaluations: A systematic review. Computer Graphics Forum, 41(3), 43–55. https://doi.org/10.1111/cgf.14521
Sullivan, G. M., & Artino, A. R. (2013). Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education, 5(4), 541–542. https://doi.org/10.4300/JGME-5-4-18
Tuomi, I., Punie, Y., Vuorikari, R., & Cabrera, M. (2018). The impact of Artificial Intelligence on learning, teaching, and education. Publications Office. https://doi.org/10.2760/12297
Van Slyke, C., Johnson, R., & Sarabadani, J. (2023). Generative artificial intelligence in information systems education: Challenges, consequences, and responses. Communications of the Association for Information Systems, 53(1), 1–21. https://doi.org/10.17705/1CAIS.05301
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Walczak, K., & Cellary, W. (2023). Challenges for higher education in the era of widespread access to Generative AI. Economics and Business Review, 9(2) 72–98. https://doi.org/10.18559/ebr.2023.2.743
Wang, T., Yang, J., & Chang, M. (Eds.). (2023). Navigating Generative AI (ChatGPT) in higher education: Opportunities and challenges. In C. Anutariya, D. Liu, A. Kinshuk, & J. Tlili (Eds.), Smart learning for a sustainable society (pp. 215–225). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5961-7_28
Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, Volume 4, 100147. https://doi.org/10.1016/j.caeai.2023.100147
Zastudil, C., Rogalska, M., Kapp, C., Vaughn, J., & MacNeil, S. (2023). Generative AI in computing education: Perspectives of students and instructors. https://doi.org/10.48550/ARXIV.2308.04309