References
- Aljanabi, M., Ghazi, M., Ali, A. H., & Saad Abas, A. (2023). ChatGPTs: Open possibilities. Iraqi Journal for Computer Science and Mathematics, 4(1), 62–64.
https://doi.org/10.52866/20ijcsm.2023.01.01.0018 - Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
https://doi.org/10.1191/1478088706qp063oa - Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, Volume 4, 100118.
https://doi.org/10.1016/j.caeai.2022.100118 - Colace, F., Santo, M. D., Lombardi, M., Pascale, F., Pietrosanto, A., & Lemma, S. (2018). Chatbot for e-learning: A case of study. International Journal of Mechanical Engineering and Robotics Research, 7(5), 528–533.
https://doi.org/10.18178/ijmerr.7.5.528-533 - Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research (2nd ed.). SAGE Publications.
- Ely, D. P. (1999). Conditions that facilitate the implementation of educational technology innovations. Educational Technology, 39(6), 23–27.
https://www.jstor.org/stable/44428566 - Evans, A. (2001). This virtual life: Escapism and simulation in our media world. Vision.
- Hines, K. (2023, June 4). History of ChatGPT: A timeline of the meteoric rise of Generative AI Chatbots. Search Engine Journal.
- Iseke-Barnes, J. M. (1996). Issues of educational uses of the internet: Power and criticism in communications and searching. Journal of Educational Computing Research, 15(1), 1–23.
https://doi.org/10.2190/FLYP-YNQC-9T55-MKB5 - Johri, A., Katz, A. S., Qadir, J., & Hingle, A. (2023). Generative artificial intelligence and engineering education. Journal of Engineering Education, 112(3), 572–577.
https://doi.org/10.1002/jee.20537 - Koh, E., & Doroudi, S. (2023). Learning, teaching, and assessment with generative artificial intelligence: Towards a plateau of productivity. Learning: Research and Practice, 9(2), 109–116.
https://doi.org/10.1080/23735082.2023.2264086 - Laato, S., Morschheuser, B., Hamari, J., & Björne, J. (2023). AI-Assisted learning with ChatGPT and large language models: Implications for higher education. 2023 IEEE International Conference on Advanced Learning Technologies (ICALT), Orem, UT, USA, 10–13 July 2023, (pp. 226–230).
https://doi.org/10.1109/ICALT58122.2023.00072 - Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22(140), 55–55.
- Miller, R. L. (2015). Rogers' innovation diffusion theory (1962, 1995). In R. L. Miller (Ed.), Information seeking behavior and technology adoption: Theories and trends (pp. 261–274). IGI Global.
- Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T., Luxton-Reilly, A., MacNeil, S., Petersen, A., Pettit, R., Reeves, B. N., & Savelka, J. (2023). The robots are here: Navigating the Generative AI revolution in computing education. Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education, 108–159.
https://doi.org/10.1145/3623762.3633499 - Rajala, J., Hukkanen, J., Hartikainen, M., & Niemelä, P. (2023). “Call me Kiran” – ChatGPT as a tutoring chatbot in a computer science course. Proceedings of the 26th International Academic Mindtrek Conference, Tampere, Finland, October 2023 (pp. 83–94).
https://doi.org/10.1145/3616961.3616974 - Rogers, E. M. (1995). Diffusion of innovations (p. 12). Free Press.
- Schiff, D. (2021). Out of the laboratory and into the classroom: The future of artificial intelligence in education. Ai & Society, 36(1), 331–348.
https://doi.org/10.1007/s00146-020-01033-8 - Shanahan, M. (2022). Talking about large language models.
https://doi.org/10.48550/ARXIV.2212.03551 - Sohail, S. S., Farhat, F., Himeur, Y., Nadeem, M., Madsen, D. Ø, Singh, Y., Atalla, S., & Mansoor, W. (2023). Decoding ChatGPT: A taxonomy of existing research, current challenges, and possible future directions.
https://doi.org/10.48550/ARXIV.2307.14107 - South, L., Saffo, D., Vitek, O., Dunne, C., & Borkin, M. A. (2022). Effective use of Likert scales in visualization evaluations: A systematic review. Computer Graphics Forum, 41(3), 43–55.
https://doi.org/10.1111/cgf.14521 - Sullivan, G. M., & Artino, A. R. (2013). Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education, 5(4), 541–542.
https://doi.org/10.4300/JGME-5-4-18 - Sunstein, C. R. (2018). #republic: Divided democracy in the age of social media. Princeton University Press.
https://doi.org/10.2307/j.ctv8xnhtd - Tuomi, I., Punie, Y., Vuorikari, R., & Cabrera, M. (2018). The impact of Artificial Intelligence on learning, teaching, and education. Publications Office.
https://doi.org/10.2760/12297 - Van Slyke, C., Johnson, R., & Sarabadani, J. (2023). Generative artificial intelligence in information systems education: Challenges, consequences, and responses. Communications of the Association for Information Systems, 53(1), 1–21.
https://doi.org/10.17705/1CAIS.05301 - Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
https://doi.org/10.2307/30036540 - Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
- Walczak, K., & Cellary, W. (2023). Challenges for higher education in the era of widespread access to Generative AI. Economics and Business Review, 9(2) 72–98.
https://doi.org/10.18559/ebr.2023.2.743 - Wang, T., Yang, J., & Chang, M. (Eds.). (2023). Navigating Generative AI (ChatGPT) in higher education: Opportunities and challenges. In C. Anutariya, D. Liu, A. Kinshuk, & J. Tlili (Eds.), Smart learning for a sustainable society (pp. 215–225). Springer Nature Singapore.
https://doi.org/10.1007/978-981-99-5961-7_28 - Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, Volume 4, 100147.
https://doi.org/10.1016/j.caeai.2023.100147 - Zastudil, C., Rogalska, M., Kapp, C., Vaughn, J., & MacNeil, S. (2023). Generative AI in computing education: Perspectives of students and instructors.
https://doi.org/10.48550/ARXIV.2308.04309